
ADSP-218x
DSP Hardware Reference

First Edition, February 2001

Part Number
82-002010-01

Analog Devices, Inc.
Digital Signal Processor Division
One Technology Way
Norwood, Mass. 02062-9106 a

Copyright Information
©1996–2001 Analog Devices, Inc., ALL RIGHTS RESERVED. This
document may not be reproduced in any form without prior, express writ-
ten consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, VisualDSP, VisualDSP++, the VisualDSP logo,
VisualDSP++ logo, EZ-ICE, and EZ-LAB are registered trademarks; and,
the White Mountain logo, Apex-ICE, Mountain-ICE, Moun-
tain-ICE/WS, Summit-ICE, Trek-ICE, Vista-ICE, and The DSP
Collaborative are trademarks of Analog Devices, Inc.

Microsoft and Windows are registered trademarks and Windows NT is a
trademark of Microsoft Corporation.

Adobe and Acrobat are registered trademarks of Adobe Corporation.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS
INTRODUCTION

Purpose ... 1-1

Audience .. 1-1

Overview .. 1-2

ADSP-218x Family Processors ... 1-4

Functional Units ... 1-6

Memory and System Interface .. 1-9

Instruction Set .. 1-10

DSP Performance .. 1-11

Core Architecture .. 1-12

Computational Units ... 1-14

Address Generators and Program Sequencer 1-15

Buses ... 1-16

On-chip Peripherals .. 1-17

Serial Ports .. 1-17

Timer .. 1-17

DMA Ports ... 1-18
ADSP-218x DSP Hardware Reference iii

CONTENTS
Development Tools ... 1-19

Integrated Development Environment 1-19

Debugger .. 1-20

Software Development Tools ... 1-20

C Compiler and Assembler ... 1-20

Linker and Loader .. 1-21

Hardware Development Tools ... 1-21

EZ-KIT Lite ... 1-21

EZ-ICE .. 1-22

Third Party Products ... 1-22

Information Online .. 1-23

Customer Support .. 1-24

Related Documents .. 1-24

Conventions ... 1-25

COMPUTATIONAL UNITS

Overview .. 2-1

Binary String .. 2-1

Unsigned Binary Numbers .. 2-2

Signed Numbers: Twos-Complement 2-2

Fractional Representation: 1.15 ... 2-2

ALU Arithmetic .. 2-3

MAC Arithmetic ... 2-4

Shifter Arithmetic ... 2-4

Arithmetic Formats Summary .. 2-5
iv ADSP-218x DSP Hardware Reference

CONTENTS
Arithmetic Logic Unit (ALU) .. 2-7

ALU Structure ... 2-8

Standard Functions .. 2-11

ALU Input/Output Registers ... 2-12

Multiprecision Capability .. 2-13

ALU Saturation Mode ... 2-13

ALU Overflow Latch Mode ... 2-14

Division .. 2-14

ALU Status .. 2-20

Multiplier Accumulator (MAC) ... 2-20

MAC Structure .. 2-21

MAC Operations ... 2-24

Standard Functions ... 2-24

Input Formats ... 2-27

MAC Input/Output Registers .. 2-28

MR Register Operation ... 2-28

MAC Overflow And Saturation ... 2-29

Rounding Mode .. 2-30

Biased Rounding ... 2-31
ADSP-218x DSP Hardware Reference v

CONTENTS
Barrel Shifter .. 2-32

Shifter Structure .. 2-32

Shifter Operations ... 2-40

Shifter Input/Output Registers .. 2-41

Derive Block Exponent ... 2-41

Immediate Shifts .. 2-42

Denormalize ... 2-44

Normalize .. 2-45

PROGRAM SEQUENCER

Overview .. 3-1

Program Sequencer Structure .. 3-2

Next Address Select Logic .. 3-3

Program Counter Register and Stack .. 3-4

Loop Counter Register and Stack .. 3-5

Loop Comparator and Stack .. 3-6

Program Control Instructions ... 3-11

JUMP Instruction ... 3-11

Direct JUMP Instructions ... 3-11

Register Indirect JUMP Instructions 3-11

CALL Instruction ... 3-13

DO UNTIL Loops .. 3-13

IDLE Instruction .. 3-15

Slow IDLE Instruction ... 3-15
vi ADSP-218x DSP Hardware Reference

CONTENTS
Interrupts ... 3-16

Interrupt Servicing Sequence ... 3-18

Configuring Interrupts .. 3-19

Interrupt Control Register ... 3-20

Interrupt Mask Register .. 3-20

Global Enable/Disable for Interrupts 3-23

Interrupt Force and Clear Register 3-23

Interrupt Latency .. 3-24

Status Registers and Status Stack .. 3-26

Arithmetic Status Register .. 3-27

Stack Status Register .. 3-28

Mode Status Register ... 3-30

Conditional Instructions ... 3-33

TOPPCSTACK Instruction ... 3-34

TOPPCSTACK Restrictions .. 3-37

DATA ADDRESS GENERATORS

Overview .. 4-1

Data Address Generators (DAGs) .. 4-1

DAG Registers .. 4-2

Indirect Addressing .. 4-4

Linear Indirect Addressing ... 4-4

Modulo Addressing (Circular Buffers) 4-5
ADSP-218x DSP Hardware Reference vii

Calculating the Base Address ... 4-6

Circular Buffer Base Address Example 1 4-6

Circular Buffer Base Address Example 2 4-7

Circular Buffer Operation Example 1 4-7

Circular Buffer Operation Example 2 4-7

Bit-Reverse Addressing .. 4-8

Programming Data Accesses .. 4-9

Variables and Arrays .. 4-9

Circular Buffers .. 4-10

PMD-DMD Bus Exchange ... 4-11

PMD-DMD Bus Exchange Structure 4-11

Using DAGs with Hardware Overlays ... 4-14

SERIAL PORTS

Overview .. 5-1

Basic Description .. 5-1

Interrupts ... 5-5

Operation ... 5-5

SPORT Programming ... 5-6

Configuration ... 5-6

Receiving and Transmitting Data ... 5-9
viii ADSP-218x DSP Hardware Reference

CONTENTS
SPORT Enable ... 5-10

Serial Clocks ... 5-11

Word Length .. 5-13

Word Framing Options ... 5-14

Frame Synchronization .. 5-14

Frame Synchronization Signal Source 5-15

Normal and Alternate Framing Modes 5-17

Active High or Active Low ... 5-18

Configuration Example ... 5-19

Timing Examples .. 5-21

Companding and Data Format .. 5-28

Companding Operation Example ... 5-29

Contention for Companding Hardware 5-30

Companding Internal Data .. 5-31

Autobuffering ... 5-32

Autobuffer Control Register ... 5-34

Serial Port Autobuffering on the ADSP-2187/2188/2189
Processors .. 5-35

Autobuffering Example .. 5-36
ADSP-218x DSP Hardware Reference ix

Multichannel Function ... 5-38

Multichannel Setup ... 5-39

Multichannel Operation .. 5-41

SPORT Timing Considerations .. 5-44

Companding Delay ... 5-44

Clock Synchronization Delay .. 5-44

Startup Timing ... 5-45

Internally Generated Frame Sync Timing 5-45

Transmit Interrupt Timing .. 5-47

Receive Interrupt Timing .. 5-48

Interrupt and Autobuffer Synchronization 5-49

Instruction Completion Latencies .. 5-50

Interrupt and Autobuffer Service Example 5-51

Receive Companding Latency .. 5-52

Interrupts with Autobuffering Enabled 5-53

Unusual Complications ... 5-54

Serial Port Startup Issues ... 5-55

Gated Serial Clocks ... 5-55

Ringing and Overshoot on Serial Clock Pins 5-57

Multi-Cycle Frame Sync Pulse ... 5-57
x ADSP-218x DSP Hardware Reference

CONTENTS
TIMER

Overview .. 6-1

Timer Architecture .. 6-2

Resolution .. 6-4

Timer Operation ... 6-4

Enabling the Timer ... 6-6

SYSTEM INTERFACE

Overview .. 7-1

Pin Descriptions ... 7-1

Pin Descriptions for 128-LQFP Package Processors 7-3

Pin Descriptions for 100-LQFP Package Processors 7-7

Common-Mode Pins ... 7-9

Memory Mode Pins .. 7-12

Active or Passive Mode Pin Configuration 7-13

Terminating Unused Pins .. 7-14

Recommendations for Unused Pins 7-18

Clock Signals .. 7-19

Synchronization Delay ... 7-22

1/2x Clock Considerations .. 7-22

Resetting the Processor .. 7-23

Software-Forced Rebooting ... 7-24

Register Values for BDMA Booting .. 7-30
ADSP-218x DSP Hardware Reference xi

External Interrupts ... 7-31

Interrupt Sensitivity .. 7-32

Flag Pins .. 7-33

Powerup Issues ... 7-35

Powerup Sequence .. 7-36

Power Supplies .. 7-37

Dual Supply Example ... 7-38

Reset Generators ... 7-40

Powerdown ... 7-43

Powerdown Control .. 7-44

Entering Powerdown ... 7-45

Exiting Powerdown ... 7-46

Ending Powerdown with the Powerdown Pin 7-46

Ending Powerdown with the RESET Pin 7-47

Startup Time after Powerdown .. 7-48

Systems Using an External TTL/CMOS Clock 7-48

Systems Using a Crystal and the Internal Oscillator 7-49

Processor Operation During Powerdown 7-51

Interrupts and Flags .. 7-51

SPORTs ... 7-51

IDMA Port During Powerdown .. 7-53

BDMA Port During Powerdown 7-53

Conditions for Lowest Power Consumption 7-54

PWDACK Pin .. 7-57
xii ADSP-218x DSP Hardware Reference

CONTENTS
Using Powerdown as a Non-Maskable Interrupt 7-59

Bus Request/Grant .. 7-59

Target System Hardware .. 7-62

Target Board Connector for EZ-ICE Probe 7-62

Using Mode Pins with RESET and ERESET Signals 7-64

Bus Request Signal .. 7-65

Memory Select Signals ... 7-66

Decoupling Capacitors .. 7-66

RESET Signal ... 7-67

PCB Board .. 7-67

EZ-ICE Powerup Procedure ... 7-68

Other Considerations .. 7-68

Recommended Reading ... 7-69

MEMORY INTERFACE

Overview .. 8-1

Program Memory and Data Memory .. 8-1

Byte Memory Space ... 8-2

I/O Memory Space .. 8-2

Memory Buses ... 8-2

External Memory Spaces .. 8-3

Composite Memory Select ... 8-3

External Overlay Memory .. 8-3

Internal Direct Memory Access Port ... 8-4

Memory Modes ... 8-4
ADSP-218x DSP Hardware Reference xiii

Memory Interfaces .. 8-5

Program Memory Interface .. 8-9

Data Memory Interface ... 8-12

Byte Memory Interface .. 8-15

I/O Memory Space .. 8-16

Composite Memory Select ... 8-18

CMS Signal as Chip Select for 32 K x 8-Bit SRAMs 8-20

BMS Disable .. 8-21

Memory Interface Modes .. 8-23

Full Memory Mode ... 8-23

Host Memory Mode .. 8-24

Accessing Peripherals .. 8-24

Byte Memory Accesses .. 8-25

Memory Interface Pins .. 8-26

DMA PORTS

Overview .. 9-1

BDMA Port .. 9-2

BDMA Port Functional Description .. 9-4

BDMA Control Registers .. 9-5

Byte Memory Word Formats ... 9-14

BDMA Booting .. 9-15

Development Software Features for BDMA Booting 9-20
xiv ADSP-218x DSP Hardware Reference

CONTENTS
IDMA Port ... 9-21

IDMA Port Pin Summary .. 9-22

DMA Port Functional Description ... 9-28

Modifying Control Registers for IDMA 9-31

IDMA Timing ... 9-32

Address Latch Cycle .. 9-33

Overlay Latch Cycle .. 9-34

Long Read Cycle ... 9-35

Short Read Cycle .. 9-37

IDMA Read—Short Read Only Mode 9-40

Long Write Cycle .. 9-41

Short Write Cycle .. 9-44

Boot Loading through the IDMA Port 9-46

DMA Cycle Stealing, Hold Offs, and IACK Acknowledge 9-47

Priority Chain ... 9-49

HARDWARE INTERFACING AND EXAMPLES

Overview .. 10-1

Interfacing to DSP Processors .. 10-1

Parallel Interfacing to DSP Processors 10-2

Reading Data from Memory-Mapped ADCs 10-2

Writing Data to Memory-Mapped DACs 10-10

Serial Interfacing to DSP Processors 10-16

Serial ADC to DSP Interface ... 10-19

Serial DAC to DSP Interface ... 10-23
ADSP-218x DSP Hardware Reference xv

Interfacing I/O Ports, Analog Front Ends, and Codecs 10-25

High-Speed Interfacing ... 10-29

DSP System Interface .. 10-31

Interfacing Examples .. 10-32

Serial Port to Codec Interface .. 10-32

Serial Port to ADC Interface .. 10-34

ADSP-218x DSP to AD7475/95 ADC Interface 10-34

ADSP-218x DSP to AD7888 ADC interface 10-36

Parallel Port to ADC Interface ... 10-38

Serial Port to DAC Interface .. 10-40

IDMA Interface to a Host Processor 10-42

IDMA Operation ... 10-42

Host Interface Hardware Design 10-45

System Design Issues .. 10-49

Advanced Topics ... 10-58

References .. 10-59

NUMERIC FORMATS

Overview .. A-1

Unsigned or Signed: Twos-Complement Format A-1

Integer or Fractional Format ... A-2
xvi ADSP-218x DSP Hardware Reference

CONTENTS
Binary Multiplication ... A-5

Fractional Mode and Integer Mode ... A-6

Block Floating-Point Format .. A-7

CONTROL/STATUS REGISTERS

Overview ... B-1

Memory-Mapped Registers ... B-3

Non-Memory Mapped Registers ... B-17

ADVANCED PRODUCT FEATURES

Overview ... C-1

INDEX
ADSP-218x DSP Hardware Reference xvii

xviii ADSP-218x DSP Hardware Reference

1 INTRODUCTION
Figure 1-0.

Table 1-0.

Listing 1-0.
Purpose
The ADSP-218x DSP Hardware Reference provides architectural and
design information about the ADSP-218x family of digital signal proces-
sors (DSPs). The architectural descriptions cover functional blocks,
busses, and ports. The ADSP-218x DSP Instruction Set Reference manual
covers programming information. The ADSP-218x data sheets for each
member of the family cover timing, electrical, and packaging specifica-
tions, as well as, many other topics related to the features and design of the
specific processor.

Audience
This manual is developed primarily for DSP designers and programmers.
The manual assumes that the audience is familiar with signal processing
concepts and has a working knowledge of microcomputer technology and
DSP-related mathematics.
ADSP-218x DSP Hardware Reference 1-1

Overview
Overview
The ADSP-218x family is a collection of programmable single-chip
microprocessors that share a common base architecture optimized for dig-
ital signal processing (DSP) and other high-speed numeric processing
applications.

These processors can be used in such diverse applications as:

• Speaker phones

• Smart phones

• Smart-card readers

• POS terminals

• Digital speech interpolation

• Video conferencing

• Data encryption

• ISDN modems

• Pattern matching

• Global positioning

• Navigation
1-2 ADSP-218x DSP Hardware Reference

Introduction
The ADSP-218x family processor architecture includes the following
features:

• Three computational units

• Two data address generators

• A program sequencer

• Two bidirectional serial ports

• A 16-bit internal DMA port

• A byte DMA port

• A programmable timer

• Flag I/O

• Extensive interrupt capabilities

• On-chip Program and Data Memory

The ADSP-218x family members differ principally in the following:

• Amount of on-chip memory (Program and Data RAM)

• Supply voltage

• Instruction processing rate (MIPS)

• External memory interface modes

This manual provides the information necessary to understand and evalu-
ate the processors’ architecture, and to determine which device best meets
your needs for a particular application. Together with the data sheets
describing the individual devices, this manual provides all the information
required to design a DSP system.
ADSP-218x DSP Hardware Reference 1-3

Overview
ADSP-218x Family Processors
The ADSP-218x family includes 18 members. Table 1-1 lists the members
and identifies their basic distinguishing features. For additional features,
see Chapter C, “Advanced Product Features.”

Table 1-1. ADSP-218x Family Processors

Processor Package Pro-
gram
RAM

Data
RAM

MIPS
(Max)

Typical
Core

Supply
Voltage

Typical
I/O

Supply
Voltage

Maximum
Input

Voltage

ADSP-2181 128-LQFP

128-MQFP

16 K 16 K 40 5.0 Supply + .5

ADSP-2183 128-LQFP

144-miniBGA

16 K 16 K 52 3.3 Supply + .5

ADSP-2184 100-LQFP 4 K 4 K 40 5.0 Supply + .5

ADSP-2184L1 100-LQFP 4 K 4 K 40 3.3 Supply + .5

ADSP-2184N3 100-LQFP

144-miniBGA

4 K 4 K 80 1.8 1.8, 2.5 or
3.3

3.6

ADSP-2185 100-LQFP 16 K 16 K 33 5.0 Supply + .5

ADSP-2185L1 100-LQFP

144-miniBGA

16 K 16 K 52 3.3 Supply + .5

ADSP-2185M2 100-LQFP

144-miniBGA

16 K 16 K 75 2.5 2.5 or 3.3 3.6

ADSP-2185N3 100-LQFP

144-miniBGA

16 K 16 K 80 1.8 1.8, 2.5 or
3.3

3.6
1-4 ADSP-218x DSP Hardware Reference

Introduction
ADSP-2186 100-LQFP

144-miniBGA

8 K 8 K 40 5.0 Supply + .5

ADSP-2186L1 100-LQFP

144-miniBGA

8 K 8 K 40 3.3 Supply + .5

ADSP-2186M2 100-LQFP

144-miniBGA

8 K 8 K 75 2.5 2.5 or 3.3 3.6

ADSP-2186N3 100-LQFP

144-miniBGA

8 K 8 K 80 1.8 1.8, 2.5 or
3.3

3.6

ADSP-2187L1 100-LQFP 32 K 32 K 52 3.3 Supply + .5

ADSP-2187N3 100-LQFP

144-miniBGA

32 K 32 K 80 1.8 1.8, 2.5 or
3.3

3.6

ADSP-2188M2 100-LQFP

144-miniBGA

48 K 56 K 75 2.5 2.5 or 3.3 3.6

ADSP-2188N3 100-LQFP

144-miniBGA

48 K 56 K 80 1.8 1.8, 2.5 or
3.3

3.6

Table 1-1. ADSP-218x Family Processors (Cont’d)

Processor Package Pro-
gram
RAM

Data
RAM

MIPS
(Max)

Typical
Core

Supply
Voltage

Typical
I/O

Supply
Voltage

Maximum
Input

Voltage
ADSP-218x DSP Hardware Reference 1-5

Overview
Functional Units
The ADSP-218x architecture includes the following main functional
units:

• Computational Units—Every processor in the ADSP-218x family
contains three independent, full-function computational units: an
arithmetic/logic unit (ALU), a multiplier/accumulator (MAC) and
a barrel shifter. The computational units process 16-bit data directly
and also provide hardware support for multiprecision computa-
tions.

ADSP-2189M2 100-LQFP

144-miniBGA

32 K 48 K 75 2.5 2.5 or 3.3 3.6

ADSP-2189N3 100-LQFP

144-miniBGA

32 K 48 K 80 1.8 1.8, 2.5 or
3.3

3.6

1 L indicates that the processor operates at 3.3 V. These processors are not tolerant to 5 V inputs.
2 M indicates that the processor core operates at 2.5 V and that the external I/O can operate

at 2.5 V or 3.3 V. The external I/O is tolerant to up to 3.6 V inputs with a supply voltage
of 2.5 V or 3.3 V. However, it is not tolerant to 5 V inputs.

3 N indicates that the processor core operates at 1.8 V and that the external I/O can operate
at 1.8 V, 2.5 V or 3.3 V. The external I/O is tolerant to up to 3.6 V inputs with a supply
voltage of 1.8 V, 2.5 V or 3.3 V. However, it is not tolerant to 5 V inputs.

Table 1-1. ADSP-218x Family Processors (Cont’d)

Processor Package Pro-
gram
RAM

Data
RAM

MIPS
(Max)

Typical
Core

Supply
Voltage

Typical
I/O

Supply
Voltage

Maximum
Input

Voltage
1-6 ADSP-218x DSP Hardware Reference

Introduction
• Data Address Generators & Program Sequencer—Two dedicated
address generators and a program sequencer supply addresses for
on-chip or external memory access. The sequencer supports sin-
gle-cycle conditional branching and executes program loops with
zero overhead. Dual data address generators allow the processor to
generate simultaneous addresses for dual operand fetches.
Together the sequencer and data address generators keep the com-
putational units continuously working, maximizing throughput.

• Memory—The ADSP-218x family uses a modified Harvard archi-
tecture in which Data Memory stores data and Program Memory
stores both instructions and data. All ADSP-218x family processors
contain on-chip RAM that comprises a portion of the Program
Memory space and Data Memory space. (Program Memory and
Data Memory are directly addressable off-chip.) The speed of the
on-chip memory allows the processor to fetch two operands (one
from Data Memory and one from Program Memory) and an
instruction (from Program Memory) in a single cycle.

• Serial Ports—The serial ports (SPORTs) provide a complete serial
interface with hardware companding for data compression and
expansion. Both µ-law and A-law companding are supported. The
SPORTs interface easily and directly to a wide variety of popular
serial devices. Each SPORT can generate a programmable internal
clock or accept an external clock. SPORT0 includes a multichannel
option.

• Timer—A programmable timer/counter with 8-bit prescaler pro-
vides periodic interrupt generation.
ADSP-218x DSP Hardware Reference 1-7

Overview
• DMA Ports—The Internal DMA Port (IDMA) and Byte DMA Port
(BDMA) in the ADSP-218x processors allow efficient data transfers
to and from internal memory. The IDMA port is a slave port inter-
face that has a 16-bit multiplexed address and data bus, which also
supports 24-bit Program Memory accesses. The IDMA port is com-
pletely asynchronous and can be written to while the ADSP-218x is
operating at full speed. The Byte Memory DMA port is a master
port that allows boot loading and storing of program instructions
and data at or during runtime.

The ADSP-218x family architecture exhibits a high degree of parallelism,
tailored to DSP requirements. In a single cycle, any device in the family
can:

• Generate the next program address

• Fetch the next instruction

• Perform one or two data moves

• Update one or two data address pointers

• Perform a computation

In that same cycle, processors can also:

• Receive and/or transmit data through the serial ports

• Receive or transmit data through the internal DMA port

• Receive or transmit data via through byte DMA port

• Decrement timer
1-8 ADSP-218x DSP Hardware Reference

Introduction
Memory and System Interface
In each ADSP-218x processor, five on-chip buses connect internal mem-
ory with the other functional units:

• Data Memory Address bus (14-bits)

• Data Memory Data bus (16-bits)

• Program Memory Address bus (14-bits)

• Program Memory Data bus (24-bits)

A single external address bus (14-bits) and a single external data bus
(24-bits) are extended off-chip; these buses can be used for either Program
or Data Memory accesses.

All ADSP-218x processors (except for the ADSP-2181 and ADSP-2183
processors) can be configured in either a Host Mode or a Full Memory
Mode. In Host Mode, each processor has an Internal DMA (IDMA) port
for connection to external host systems. The IDMA port provides trans-
parent, direct access to the DSP’s on-chip Program and Data RAM. Since
the ADSP-2181and ADSP-2183 processors have complete address, data,
and IDMA busses, these two processors provide both IDMA and BDMA
functionality concurrently, giving you greater system functionality with-
out additional external logic.

In Full Memory Mode, the ADSP-218x processors have complete use of
the external address and data busses. In this mode, the processors behave
in exactly the same manner as the ADSP-2181 and ADSP-2183 processor
with the IDMA port removed.

An interface to low cost byte-wide memory is provided by the Byte DMA
port (BDMA) port. The BDMA port is bidirectional and can directly
address up to four megabytes of external RAM or ROM for off-chip stor-
age of program overlays or data tables.
ADSP-218x DSP Hardware Reference 1-9

Overview
Boot circuitry provides for loading on-chip Program Memory automati-
cally after reset. This can be done through the BDMA port. Multiple
programs can be selected and loaded with no additional hardware.

External devices can gain control of the processor’s buses with the bus
request and bus grant signals (BR, BG). The ADSP-218x processors can
continue running while the buses are granted to another device (when Go
mode is enabled for the processor core) as long as an external memory
operation is not required.

The ADSP-218x processors support memory-mapped peripherals with
programmable wait state generation through a dedicated 2048 location
I/O Memory space.

All ADSP-218x family processors operate in the same manner in their
response to interrupts. The program sequencer allows the processor to
respond with minimum latency. Interrupts can be nested with no addi-
tional latency. External interrupts can be configured as edge- or
level-sensitive. Internal interrupts can be generated from the timer, the
host interface port, the serial ports, and the BDMA port.

Instruction Set
The ADSP-218x family shares a single unified instruction set designed for
upward compatibility with higher-integration devices.

The ADSP-218x family instruction set provides flexible data moves. Mul-
tifunction instructions combine one or more data moves with a
computation. Every instruction can be executed in a single processor
cycle. The assembly language uses an algebraic syntax for readability and
ease of coding. A comprehensive set of software and hardware tools sup-
ports program development. The instruction set is detailed in the
ADSP-218x DSP Instruction Set Reference.
1-10 ADSP-218x DSP Hardware Reference

Introduction
DSP Performance
Signal processing applications make special performance demands which
distinguish DSP architectures from other microprocessor and microcon-
troller architectures. Not only must instruction execution be fast, but
DSPs must also perform well in each of the following areas:

• Fast and Flexible Arithmetic—The ADSP-218x family base architec-
ture provides single-cycle computation for multiplication, multipli-
cation with accumulation, arbitrary amounts of shifting, and
standard arithmetic and logical operations. In addition, the arith-
metic units allow for any sequence of computations so that a given
DSP algorithm can be executed without being reformulated.

• Extended Dynamic Range—Extended sums-of-products, common in
DSP algorithms, are supported in the multiply/accumulate units of
the ADSP-218x family. A 40-bit accumulator provides eight bits of
protection against overflow in successive additions to ensure that no
loss of data or range occurs; 256 overflows would have to occur
before any data is lost. Special instructions are provided for imple-
menting block floating-point scaling of data.

• Single-Cycle Fetch of Two Operands—In extended sums-of-products
calculations, two operands are needed on each cycle to feed the cal-
culation. All members of the ADSP-218x family are able to sustain
two-operand data throughput, whether the data is stored on-chip or
off.

• Hardware Circular Buffers—A large class of DSP algorithms, includ-
ing digital filters, requires circular data buffers. The ADSP-218x
family base architecture includes hardware to handle address pointer
wraparound, simplifying the implementation of circular buffers
both on- and off-chip, and reducing overhead (thereby improving
performance).
ADSP-218x DSP Hardware Reference 1-11

Core Architecture
• Zero-Overhead Looping and Branching—DSP algorithms are repeti-
tive and are most logically expressed as loops. The program
sequencer in the ADSP-218x family supports looped code with zero
overhead, combining excellent performance with the clearest pro-
gram structure. Likewise, there are no overhead penalties for condi-
tional branches.

Core Architecture
This section gives a summary of the ADSP-218x family core architecture.
Each component of the core architecture is described in detail in this man-
ual. The following list identifies the ADSP-218x family’s core
architectural components and specifies the chapters that cover each
component:

• Arithmetic/logic unit (ALU)—Chapter 2, Computational Units

• Multiplier/accumulator (MAC)—Chapter 2, Computational Units

• Barrel shifter—Chapter 2, Computational Units

• Program sequencer—Chapter 3, Program Sequencer

• Status registers and stacks—Chapter 3, Program Sequencer

• Data Address generators (DAGs)—Chapter 4, Data Address Gener-
ators

• PMD-DMD bus exchange (PX registers)—Chapter 4, Data Address
Generators
1-12 ADSP-218x DSP Hardware Reference

Introduction
Figure 1-1 shows the ADSP-218x family core architecture. The sections
that follow provide a brief summary of each core unit.

INPUT REGS

OUTPUT REGS

SHIFTER

INPUT REGS

OUTPUT REGS

ALU

INPUT REGS

OUTPUT REGS

MAC

R BUS 16

DMD BUS

PMD BUS

DATA
ADDRESS

GENERATOR
#2

DATA
ADDRESS

GENERATOR
#1

DMA BUS

PMA BUS14

14

24

16

PROGRAM
SEQUENCER

Figure 1-1. Core Architecture
ADSP-218x DSP Hardware Reference 1-13

Core Architecture
Computational Units
Every processor in the ADSP-218x family contains three independent,
full-function computational units: an arithmetic/logic unit (ALU), a mul-
tiplier/accumulator (MAC) and a barrel shifter. The computation units
process 16-bit data directly and provide hardware support for multipreci-
sion computation as well.

The ALU performs a standard set of arithmetic and logic operations in
addition to division primitives. The MAC performs single-cycle multiply,
multiply/add and multiply/subtract operations. The shifter performs logi-
cal and arithmetic shifts, normalization, denormalization, and
derive-exponent operations. The shifter implements numeric format con-
trol including multiword floating-point representations. The
computational units are arranged side-by-side, instead of serially, so that
the output of any unit may be the input of any unit on the next cycle. The
internal result (R) bus directly connects the computational units to make
this possible.

All three units contain input and output registers that are accessible from
the internal Data Memory data (DMD) bus. Computational operations
generally take their operands from input registers and load the result into
an output register. The registers act as a stopover point for data between
memory and the computational circuitry. This feature introduces one
level of pipelining on input and one level on output. The R bus allows the
result of a previous computation to be used directly as the input to
another computation. This avoids excessive pipeline delays when a series
of different operations are performed.
1-14 ADSP-218x DSP Hardware Reference

Introduction
Address Generators and Program Sequencer
Two dedicated data address generators and a powerful program sequencer
ensure efficient use of the computational units. The data address genera-
tors (DAGs) provide memory addresses when memory data is transferred
to or from the input or output registers. Each DAG keeps track of up to
four address pointers. When a pointer is used for indirect addressing, it is
post-modified by a value in a specified register. With two independent
DAGs, the processor can generate two addresses simultaneously for dual
operand fetches.

A length value may be associated with each pointer to implement auto-
matic modulo addressing for circular buffers. (The circular buffer feature
is also used by the serial ports for automatic data transfers. Refer to the
Chapter 5, “Serial Ports.” for additional information.)

! For linear buffers, the length value must be set to zero.

DAG1 can supply addresses to Data Memory only; DAG2 can supply
addresses to either Data Memory or Program Memory. When the appro-
priate mode bit is set in the mode status register (MSTAT), the output
address of DAG1 is bit-reversed before being driven onto the address bus.
This feature facilitates addressing in radix-2 Fast Fourier Transform (FFT)
algorithms.

The program sequencer supplies instruction addresses to the Program
Memory. The sequencer is driven by the instruction register, which holds
the currently executing instruction. The instruction register introduces a
single level of pipelining into the program flow. Instructions are fetched
and loaded into the instruction register during one processor cycle, and
executed during the following cycle while the next instruction is
prefetched. To minimize overhead cycles, the sequencer supports condi-
tional jumps, subroutine calls and returns in a single cycle. With an
internal loop counter and loop stack, the processor executes looped code
with zero overhead. No explicit jump instructions are required to loop.
ADSP-218x DSP Hardware Reference 1-15

Core Architecture
Buses
The processors have five internal buses:

• Program Memory Address (PMA) and Data Memory Address
(DMA) buses— Used internally for the addresses associated with
Program and Data Memory.

• Program Memory Data (PMD) and Data Memory Data (DMD)
buses — Used for the data associated with memory spaces. These
buses are multiplexed into a single external address bus and a single
external data bus; the BMS, DMS and PMS signals select the different
address spaces.

• Result (R) bus—Transfers intermediate results directly between the
various computational units.

The PMA bus is 14 bits wide allowing direct access of up to 16 K words of
mixed instruction code and data. The PMD bus is 24 bits wide to accom-
modate the 24-bit instruction width.

The DMA bus is 14 bits wide allowing direct access of up to 16 K words
of data. The Data Memory data (DMD) bus is 16 bits wide. The DMD
bus provides a path for the contents of any register in the processor to be
transferred to any other register or to any Data Memory location in a sin-
gle cycle. The Data Memory address comes from two sources: an absolute
value specified in the instruction code (direct addressing) or the output of
a data address generator (indirect addressing). Only indirect addressing is
supported for data fetches from Program Memory.

The Program Memory data (PMD) bus can also be used to transfer data to
and from the computational units through direct paths or via the
PMD-DMD bus exchange unit. The PMD-DMD bus exchange unit per-
mits data to be passed from one bus to the other. It contains hardware to
overcome the 8-bit width discrepancy between the two buses, when
necessary.
1-16 ADSP-218x DSP Hardware Reference

Introduction
On-chip Peripherals
This section describes the additional functional units which are included
in the ADSP-218x family processors.

Serial Ports
The ADSP-218x processors have two bidirectional, double-buffered serial
ports (SPORTs) for serial communications. The SPORTs are synchronous
and use framing signals to control data flow. Each SPORT can generate its
serial clock internally or use an external clock. The framing sync signals
may be generated internally or by an external device. Word lengths may
vary from three to sixteen bits. One serial port, SPORT0, has a multi-
channel capability that allows the receiving or transmitting of arbitrary
data words from a 24-word or 32-word bitstream. The other serial port,
SPORT1, may optionally be configured as two additional external inter-
rupt pins (IRQ1 and IRQ0)and the Flag Out (FO) and Flag In (FI) pins.

Timer
The programmable interval timer provides periodic interrupt generation.
An 8-bit prescaler register allows the timer to decrement a 16-bit count
register over a range from each cycle to every 256 cycles. An interrupt is
generated when this count register decrements to zero. The count register
is automatically reloaded from a 16-bit period register after the timer
interrupt is generated; the count resumes immediately.
ADSP-218x DSP Hardware Reference 1-17

On-chip Peripherals
DMA Ports
The ADSP-218x contains two DMA ports, an Internal DMA (IDMA)
port and a Byte DMA (BDMA) port. The IDMA port provides an effi-
cient means of communication between a host system and the DSP. The
port is used to access the on-chip Program Memory and Data Memory of
the DSP with only one cycle per word of overhead. The IDMA port has a
16-bit multiplexed address and data bus and supports 24-bit Program
Memory. The IDMA port is completely asynchronous and can be written
to while an ADSP-218x family processor is operating at full speed.

The internal memory address is latched and then automatically incre-
mented after each IDMA transaction. An external device can therefore
access a block of sequentially addressed memory by specifying only the
starting address of the block.

The Byte Memory DMA controller allows loading and storing of program
instructions and data using the Byte Memory space. The BDMA circuitry
is able to access the Byte Memory space while the processor is operating
normally and steals only one processor cycle per 8-, 16-, or 24-bit word
transferred.
1-18 ADSP-218x DSP Hardware Reference

Introduction
Development Tools
The ADSP 218x is supported by VisualDSP®, an easy-to-use program-
ming environment, comprised of an Integrated Development
Environment (IDE) and Debugger. VisualDSP lets you manage projects
from within a single, integrated interface. Because the project develop-
ment and debug environments are integrated, you can move easily
between editing, building, and debugging activities.

Integrated Development Environment
The IDE includes access to all the activities necessary to create and debug
DSP projects. You can create or modify source files or view listing or map
files with the IDE Editor. This Editor includes multiple language syntax
highlighting, OLE drag and drop, bookmarks, and standard editing opera-
tions such as undo/redo, find/replace, copy/paste/cut, and go to.

Also, the IDE includes access to the DSP C Compiler, C Runtime
Library, Assembler, Linker, Loader, Simulator, and Splitter. You specify
options for these Tools through Property Page dialogs. Property Page dia-
logs are easy to use, and make configuring, changing, and managing your
projects simple. These options control how the tools process inputs and
generate outputs, and have a one-to-one correspondence to the tools’
command line switches. You can define these options once, or modify
them to meet changing development needs. You can also access the Tools
from the operating system command line if you choose.
ADSP-218x DSP Hardware Reference 1-19

Development Tools
Debugger
The Debugger has an easy-to-use, common interface for all processor sim-
ulators and emulators available through Analog Devices and third parties
or custom developments. The Debugger has many features that greatly
reduce debugging time. You can view C source interspersed with the
resulting Assembly code. You can profile execution of a range of instruc-
tions in a program; set simulated watch points on hardware and software
registers, Program and Data Memory; and trace instruction execution and
memory accesses. These features enable you to correct coding errors, iden-
tify bottlenecks, and examine DSP performance.

You can use the custom register option to select any combination of regis-
ters to view in a single window. The Debugger can also generate inputs,
outputs, and interrupts so you can simulate real world application
conditions.

Software Development Tools
Software Development Tools, which support the ADSP-218x family, let
you develop applications that take full advantage of the architecture,
including shared memory and memory overlays. Software Development
Tools include C Compiler, C Runtime Library, DSP and Math Libraries,
Assembler, Linker, Loader, Simulator, and Splitter.

C Compiler and Assembler

The C Compiler generates efficient code that is optimized for both code
density and execution time. The C Compiler allows you to include Assem-
bly language statements inline. Because of this, you can program in C and
still use Assembly for time-critical loops. You can also use pretested Math,
DSP, and C Runtime Library routines to help shorten your time to mar-
ket. The ADSP-218x family assembly language is based on an algebraic
syntax that is easy to learn, program, and debug.
1-20 ADSP-218x DSP Hardware Reference

Introduction
Linker and Loader

The Linker provides flexible system definition through Linker Description
Files (.LDF). In a single Linker Description File, you can define different
types of executables for a single or multiprocessor system. The Linker
resolves symbols over multiple executables, maximizes memory use, and
easily shares common code among multiple processors. The Loader sup-
ports creation of host and PROM boot images. The Simulator is a
cycle-accurate, instruction-level simulator — allowing you to simulate
your application in real time.

Hardware Development Tools
Analog Devices’ hardware development tools for the ADSP-218x include

the EZ-KIT Lite™ evaluation board and the EZ-ICE® serial emulator.

EZ-KIT Lite

The EZ-KIT Lite allows users to investigate ADSP-218x family processors
and begin to develop applications. It consists of a stand-alone ADSP-218x
processor-based evaluation board with fully functional code generation
debug software. It contains a complete set of development tools, including
a C compiler, assembler, linker, and the latest evaluation suite of

VisualDSP® development environment. (All software tools are limited to
use with the EZ-KIT Lite product.)

Demonstration programs are shipped with the product and include com-
mon signal processing algorithms, such as convolution and Fibonacci
calculations. Also included are programs that demonstrate the use of
ADSP-218x hardware features, such as interrupts, overlays, timers, and an
on-board codec.
ADSP-218x DSP Hardware Reference 1-21

Development Tools
EZ-ICE

The ADSP-218x EZ-ICE is a serial emulator that provides a controlled
environment for observing, debugging, and testing activities in a target
system. The EZ-ICE connects directly to the target processor through the
emulation interface port. Its key features include the following:

• Support for all ADSP-218x processors

• High-speed RS232 serial port

• Shielded enclosure with reset switch accessibility

• I/O voltage setting confirmation LEDs

• Support for 1.8, 2.5, 3.3, and 5.0 volt DSPs

• CE certified

For additional information about EZ-ICE and how to use it, see “Target
System Hardware” in Chapter 7, System Interface.

Third Party Products
The VisualDSP environment enables third-party companies to add value
using Analog Devices’ published set of Application Programming Inter-
faces (API). Third party products—realtime operating systems, emulators,
high-level language compilers, multiprocessor hardware —can interface
seamlessly with VisualDSP thereby simplifying the tools integration task.
VisualDSP follows the COM API format.
1-22 ADSP-218x DSP Hardware Reference

Introduction
Two API tools, Target Wizard and API Tester, are also available for use
with the API set. These tools help speed the time-to-market for vendor
products. Target Wizard builds the programming shell based on API fea-
tures the vendor requires. The API tester exercises the individual features
independently of VisualDSP. Third parties can use a subset of these APIs
that meet their application needs. The interfaces are fully supported and
backward compatible.

Further details and ordering information are available in the VisualDSP
Development Tools data sheet. This data sheet can be requested from any
Analog Devices sales office or distributor.

Information Online
Analog Devices is online on the internet at http://www.analog.com. Our
Web pages provide information on the company and products, including
access to technical information and documentation, product overviews,
and product announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways:

• Visit our World Wide Web site at www.analog.com

• FAX questions or requests for information to 1(781)461-3010.

• Access the DSP Division File Transfer Protocol (FTP) site at ftp
ftp.analog.com or ftp 137.71.23.21 or ftp://ftp.analog.com.
ADSP-218x DSP Hardware Reference 1-23

Customer Support
Customer Support
You can reach our Customer Support group in the following ways:

• E-mail questions to dsp.support@analog.com or
dsp.europe@analog.com (European customer support)

• Telex questions to 924491, TWX:710/394-6577

• Cable questions to ANALOG NORWOODMASS

• Contact your local ADI sales office or an authorized ADI distributor

• Send questions by mail to:
Analog Devices, Inc.
DSP Division
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

Related Documents
For more information about Analog Devices DSPs and development
products, see the following documents:

• DSP Microcomputer Data Sheets for the ADSP-218x Family Mem-
bers

• ADSP-218x DSP Instruction Set Reference

• ADSP-2100 Family DSP Applications, Vol. 1 and Vol. 2

• VisualDSP User’s Guide for ADSP-218x & ADSP-219x Family DSPs

• C Compiler & Library Manual for ADSP-218x & ADSP-219x Family
DSPs
1-24 ADSP-218x DSP Hardware Reference

Introduction
• Assembler Manual for ADSP-218x & ADSP-219x Family DSPs

• Linker & Utilities Manual for ADSP-218x & ADSP-219x Family
DSPs

All the manuals are included in the software distribution CD-ROM. To
access these manuals, use the Help Topics command in the VisualDSP
environment’s Help menu and select the Online Manuals book. From this
Help topic, you can open any of the manuals, which are in Adobe Acrobat
PDF format.

Conventions
The following are conventions that apply to all chapters. Note that addi-
tional conventions, which apply only to specific chapters, appear
throughout this document.

Table 1-2. Notation Conventions

Example Description

AX0, SR, PX Register names appear in UPPERCASE and keyword font

CLKOUT, RESET Pin names appear in UPPERCASE and keyword font; active
low signals appear with an OVERBAR.

IF, DO/UNTIL Assembler instructions (mnemonics) appear in UPPERCASE
and keyword font

[this,that]

|this,that|

Assembler instruction syntax summaries show optional items
two ways. When the items are optional and none is required, the
list is shown enclosed in square brackets, []. When the choices
are optional, but one is required, the list is shown enclosed in
vertical bars, ||.

0xabcd, b#1111 A 0x prefix indicates hexadecimal; a b# prefix indicates binary
ADSP-218x DSP Hardware Reference 1-25

Conventions
! A note, providing information of special interest or identifying a
related DSP topic.

" A caution, providing information on critical design or program-
ming issues that influence operation of the DSP.

Click Here In the online version of this document, a cross reference acts as a
hypertext link to the item being referenced. Click on blue refer-
ences (Table, Figure, or section names) to jump to the location.

Table 1-2. Notation Conventions

Example Description
1-26 ADSP-218x DSP Hardware Reference

2 COMPUTATIONAL UNITS
Figure 2-0.

Table 2-0.

Listing 2-0.
Overview
This chapter describes the architecture and function of the ADSP-218x
processors’ three computational units: the arithmetic/logic unit, the mul-
tiplier/accumulator and the barrel shifter.

Every device in the ADSP-218x family is a 16-bit, fixed-point processor.
Most operations assume a twos-complement number representation, while
others assume unsigned numbers or simple binary strings. Special features
support multiword arithmetic and block floating-point. Details concern-
ing the various number formats supported by the ADSP-218x family are
given in Appendix A, “Numeric Formats”.

In ADSP-218x family arithmetic, signed numbers are always in twos-com-
plement format. The processors do not use signed-magnitude,
ones-complement, BCD or excess-n formats.

Binary String
This is the simplest binary notation; sixteen bits are treated as a bit pat-
tern. Examples of computation using this format are the logical
operations: NOT, AND, OR, XOR. These ALU operations treat their
operands as binary strings with no provision for sign bit or binary point
placement.
ADSP-218x DSP Hardware Reference 2-1

Overview
Unsigned Binary Numbers
Unsigned binary numbers may be thought of as positive, having nearly
twice the magnitude of a signed number of the same length. The least sig-
nificant words of multiple precision numbers are treated as unsigned
numbers.

Signed Numbers: Twos-Complement
In discussions of ADSP-218x family arithmetic, “signed” refers to
twos-complement. Most ADSP-218x family operations presume or sup-
port twos-complement arithmetic. The ADSP-218x family does not use
signed-magnitude, ones-complement, BCD, or excess-n formats.

Fractional Representation: 1.15
ADSP-218x family arithmetic is optimized for numerical values in a frac-
tional binary format denoted by 1.15 (“one dot fifteen”). In the 1.15
format, there is one sign bit (the MSB) and fifteen fractional bits repre-
senting values from –1 up to one LSB less than +1.

Figure 2-1 shows the bit weighting for 1.15 numbers.

–2
0

2
–1

2
–2

2
–3

2
–4

2
–5

2
–6

2
–7

2
–8

2
–9

2
–10

2
–11

2
–12

2
–13

2
–14

2
–15

Figure 2-1. Bit Weighting for 1.15 Numbers
2-2 ADSP-218x DSP Hardware Reference

Computational Units
Table 2-1 gives examples of 1.15 numbers and their decimal equivalents:

ALU Arithmetic
All operations on the ALU treat operands and results as simple 16-bit
binary strings, except the signed division primitive (DIVS). Various status
bits treat the results as signed: the overflow (AV) condition code, and the
negative (AN) flag.

The logic of the overflow bit (AV) is based on twos-complement arith-
metic. It is set if the MSB changes in a manner not predicted by the signs
of the operands and the nature of the operation. For example, adding two
positive numbers must generate a positive result; a change in the sign bit
signifies an overflow and sets AV. Adding a negative and a positive may
result in either a negative or positive result, but cannot overflow.

The logic of the carry bit (AC) is based on unsigned-magnitude arithmetic.
It is set if a carry is generated from bit 16 (the MSB). The (AC) bit is most
useful for the lower word portions of a multiword operation.

Table 2-1. Examples of 1.15 Number Format

1.15 Number Decimal Equivalent

0x0001 0.000031

0x7FFF 0.999969

0xFFFF -0.000031

0x8000 -1.000000
ADSP-218x DSP Hardware Reference 2-3

Overview
MAC Arithmetic
The multiplier produces results that are binary strings. The inputs are
“interpreted” according to the information given in the instruction itself
(signed times signed, unsigned times unsigned, a mixture, or a rounding
operation). The 32-bit result from the multiplier is assumed to be signed,
in that it is sign-extended across the full 40-bit width of the MR register set.

The ADSP-218x family supports two modes of format adjustment: the
fractional mode for fractional operands, 1.15 format (1 signed bit, 15 frac-
tional bits), and the integer mode for integer operands, 16.0 format.

When the processor multiplies two 1.15 operands, the result is a 2.30
(2 sign bits, 30 fractional bits) number. In the fractional mode, the MAC
automatically shifts the multiplier product (P) left one bit before transfer-
ring the result to the multiplier result register (MR). This shift causes the
multiplier result to be in 1.31 format, which can be rounded to 1.15 for-
mat. Figure 2-7 on page 2-26 shows this.

In the integer mode, the left shift does not occur. For example, if the oper-
ands are in the 16.0 format, the 32-bit multiplier result would be in 32.0
format. A left shift is not needed; it would change the numerical represen-
tation. Figure 2-8 on page 2-26 shows this.

Shifter Arithmetic
Many operations in the shifter are explicitly geared to signed (twos-com-
plement) or unsigned values: logical shifts assume unsigned-magnitude or
binary string values and arithmetic shifts assume twos-complement.

The exponent logic assumes twos-complement numbers. The exponent
logic supports block floating-point, which is also based on twos-comple-
ment fractions.
2-4 ADSP-218x DSP Hardware Reference

Computational Units
Arithmetic Formats Summary
Table 2-2 summarizes some of the arithmetic characteristics of
ADSP-218x family operations. In addition to the numeric types described
in this section, the ADSP-218x Family C Compiler supports a form of
32-bit floating-point in which one 16-bit word is the exponent and the
other 16-bit word is the mantissa. See the C Compiler & Library Manual
for ADSP-218x & ADSP-219x Family DSPs for more information.

Table 2-2. Arithmetic Formats

Operation
(by Computational Unit)

Arithmetic Formats

Operands Result

ALU

Addition Signed or unsigned Interpret flags

Subtraction Signed or unsigned Interpret flags

Logical Operations Binary string Same as operands

Division Explicitly signed/unsigned Same as operands

ALU Overflow Signed Same as operands

ALU Carry Bit 16-bit unsigned Same as operands

ALU Saturation Signed Same as operands
ADSP-218x DSP Hardware Reference 2-5

Overview
MAC, Fractional

Multiplication (P) 1.15 Explicitly
signed/unsigned

32 bits (2.30)

Multiplication (MR) 1.15 Explicitly
signed/unsigned

2.30 shifted to 1.31

Mult /Add 1.15 Explicitly
signed/unsigned

2.30 shifted to 1.31

Mult /Subtract 1.15 Explicitly
signed/unsigned

2.30 shifted to 1.31

MAC Saturation Signed same as operands

MAC, Integer Mode

Multiplication (P) 1.15 Explicitly
signed/unsigned

32 bits (2.30)

Multiplication (MR) 16.0 Explicitly
signed/unsigned

32.0 no shift

Mult /Add 16.0 Explicitly
signed/unsigned

32.0 no shift

Mult /Subtract 16.0 Explicitly
signed/unsigned

32.0 no shift

MAC Saturation Signed same as operands

Table 2-2. Arithmetic Formats (Cont’d)

Operation
(by Computational Unit)

Arithmetic Formats

Operands Result
2-6 ADSP-218x DSP Hardware Reference

Computational Units
Arithmetic Logic Unit (ALU)
The Arithmetic Logic Unit (ALU) provides a standard set of arithmetic
and logical functions. The arithmetic functions are add, subtract, negate,
increment, decrement and absolute value. These are supplemented by two
division primitives with which multiple cycle division can be constructed.
The logic functions are AND, OR, XOR (exclusive OR) and NOT.

Shifter

Logical Shift Unsigned / binary string same as operands

Arithmetic Shift Signed same as operands

Exponent Detection Signed same as operands

Table 2-2. Arithmetic Formats (Cont’d)

Operation
(by Computational Unit)

Arithmetic Formats

Operands Result
ADSP-218x DSP Hardware Reference 2-7

Arithmetic Logic Unit (ALU)
ALU Structure
Figure 2-2 shows a block diagram of the ALU.

Figure 2-2. ALU Block Diagram
2-8 ADSP-218x DSP Hardware Reference

Computational Units
The ALU is 16 bits wide with two 16-bit input ports, X and Y, and one
output port, R. The ALU accepts a carry-in signal (CI) which is the carry
bit from the processor arithmetic status register (ASTAT). The ALU gener-
ates six status signals: the zero (AZ) status, the negative (AN) status, the
carry (AC) status, the overflow (AV) status, the X-input sign (AS) status, and
the quotient (AQ) status. All arithmetic status signals are latched into the
arithmetic status register (ASTAT) at the end of the cycle. Please see the
ADSP-218x DSP Instruction Set Reference for information on how each
instruction affects the ALU flags.

The X input port of the ALU can accept data from two sources: the AX reg-
ister file or the result (R) bus. The R bus connects the output registers of
all the computational units, permitting them to be used as input operands
directly. The AX register file is dedicated to the X input port and consists
of two registers, AX0 and AX1. These AX registers are readable and writable
from the DMD bus. The instruction set also provides for reading these
registers over the PMD bus, but there is no direct connection; this opera-
tion uses the PMD-DMD bus exchange unit. The AX register file outputs
are dual-ported so that one register can provide input to the ALU while
either one simultaneously drives the DMD bus.

The Y input port of the ALU can also accept data from two sources: the AY
register file and the ALU feedback (AF) register. The AY register file is ded-
icated to the Y input port and consists of two registers, AY0 andAY1. These
registers are readable and writable from the DMD bus and writable from
the PMD bus. The instruction set also provides for reading these registers
over the PMD bus, but there is no direct connection; this operation uses
the PMD-DMD bus exchange unit. The AY register file outputs are also
dual-ported: one AY register can provide input to the ALU while either one
simultaneously drives the DMD bus.
ADSP-218x DSP Hardware Reference 2-9

Arithmetic Logic Unit (ALU)
The output of the ALU is loaded into either the ALU feedback (AF) regis-
ter or the ALU result (AR) register or it is discarded. The AF register is an
ALU internal register that allows the ALU result to be used directly as the
ALU Y input. The AR register can drive both the DMD bus and the R bus.
It is also loadable directly from the DMD bus. The ADSP-218x processor
instruction set also provides for reading AR over the PMD bus, but there is
no direct connection; this operation uses the PMD-DMD bus exchange
unit.

Any of the registers associated with the ALU can be both read and written
in the same cycle. Registers are read at the beginning of a processor clock
cycle and written at the end of a processor clock cycle. A register read,
therefore, reads the value loaded at the end of a previous cycle. A new
value written to a register cannot be read out until a subsequent cycle.
This allows an input register to provide an operand to the ALU at the
beginning of the cycle and be updated with the next operand from mem-
ory at the end of the same cycle. It also allows a result register to be stored
in memory and updated with a new result in the same cycle. See “Multi-
function Instructions” in the ADSP-218x DSP Instruction Set Reference for
an illustration of this same-cycle read and write.

The ALU contains a duplicate bank of registers (shown in Figure 2-2 on
page 2-8) behind the primary registers. There are actually two sets of AR,
AF, AX, and AY register files. Only one bank is accessible at a time. The
additional bank of registers can be activated (such as during an interrupt
service routine) for extremely fast context switching. A new task, like an
interrupt service routine, can be executed without transferring current
states to storage.

The selection of the primary or alternate bank of registers is controlled by
bit 0 in the processor mode status register (MSTAT). If this bit is a 0, the
primary bank is selected; if it is a 1, the secondary bank is selected.
2-10 ADSP-218x DSP Hardware Reference

Computational Units
Standard Functions
Table 2-3 lists the standard ALU functions.

Table 2-3. Standard ALU Functions

Function Description

R = X + Y Add X and Y operands

R = X + Y + CI Add X and Y operands and carry-in bit

R = X – Y Subtract Y from X operand

R = X – Y + CI - 1 Subtract Y from X operand with “borrow”

R = Y – X Subtract X from Y operand

R = Y – X + CI - 1 Subtract X from Y operand with “borrow”

R = – X Negate X operand (twos-complement)

R = – Y Negate Y operand (twos-complement)

R = Y + 1 Increment Y operand

R = Y – 1 Decrement Y operand

R = PASS X Pass X operand to result unchanged

R = PASS Y Pass Y operand to result unchanged

R = 0 (PASS 0) Clear result to zero

R = ABS X Absolute value of X operand

R = X AND Y Logical AND of X and Y operands

R = X OR Y Logical OR of X and Y operands
ADSP-218x DSP Hardware Reference 2-11

Arithmetic Logic Unit (ALU)
ALU Input/Output Registers
Table 2-4 lists the sources for ALU input and output registers.

R = X XOR Y Logical Exclusive OR of X and Y operands

R = NOT X Logical NOT of X operand (ones-complement)

R = NOT Y Logical NOT of Y operand (ones-complement)

Table 2-4. Sources for ALU Input and Output Registers

Source for X Input Port Source for Y Input Port Destination for R
Output Port

AX0, AX1 AY0, AY1 AR

AR AF AF

MR0, MR1, MR21

1 MR0, MR1 and MR2 are multiplier/accumulator result registers.

NONE

SR0, SR12

2 SR0 and SR1 are shifter result registers.

Table 2-3. Standard ALU Functions (Cont’d)

Function Description
2-12 ADSP-218x DSP Hardware Reference

Computational Units
Multiprecision Capability
Multiprecision operations are supported in the ALU with the carry-in sig-
nal and ALU carry (AC) status bit. The carry-in signal is the AC status bit
that was generated by a previous ALU operation. The “add with carry”
(+ C) operation is intended for adding the upper portions of multipreci-
sion numbers. The “subtract with borrow” (C – 1 is effectively a
“borrow”) operation is intended for subtracting the upper portions of
multiprecision numbers.

ALU Saturation Mode
The AR register has a twos-complement saturation mode of operation that
automatically sets it to the maximum negative or positive value if an ALU
result overflows or underflows. This feature is enabled or disabled execut-
ing the ena ar_sat and dis ar_sat assembly instructions, respectively, or
by setting or clearing bit 3 of MSTAT. The ALU saturation mode is disabled
by default upon reset. When enabled, the value loaded into AR during an
ALU operation depends on the state of the overflow and carry status gen-
erated by the ALU on that cycle. The following table summarizes the
loading of AR when saturation mode is enabled.

Table 2-5. Saturation Mode

Overflow (AV) Carry (AC) AR Contents

0 0 ALU Output

0 1 ALU Output

1 0 0111111111111111 full-scale positive

1 1 1000000000000000 full-scale negative
ADSP-218x DSP Hardware Reference 2-13

Arithmetic Logic Unit (ALU)
The operation of the ALU saturation mode is different from the Multi-
plier/Accumulator saturation ability, which is enabled only on an
instruction by instruction basis. For the ALU, enabling saturation means
that all subsequent operations are processed this way.

When the ALU saturation mode is used, only the AR register saturates; if
the AF register is the destination, wrap-around will occur but the flags will
reflect the saturated result.

ALU Overflow Latch Mode

The ALU overflow latch mode, causes the AV bit to “stick” once it is set.
This feature is enabled or disabled by executing the ena av_latch and dis
av_latch instructions, respectively, or by setting or clearing bit 2 in the
MSTAT register. The ALU overflow latch mode is disabled by default upon
reset. When an ALU overflow occurs and the overflow latch mode is
enabled, the AV bit of the ASTAT register is set and remains set, even if sub-
sequent ALU operations do not generate overflows. In the overflow latch
mode, AV can only be cleared by directly writing a zero to bit 2 of the
ASTAT register via the internal DMD bus.

Division
The ALU supports division. The divide function is achieved with addi-
tional shift circuitry not shown in Figure 2-2 on page 2-8. Division is
accomplished with two special divide primitives. These are used to imple-
ment a non-restoring conditional add-subtract division algorithm. The
division can be either signed or unsigned; however, the dividend and divi-
sor must both be of the same type. Appendix A details various exceptions
to the normal division operation as described in this section.
2-14 ADSP-218x DSP Hardware Reference

Computational Units
A single-precision divide, with a 32-bit dividend (numerator) and a 16-bit
divisor (denominator), yielding a 16-bit quotient, executes in 16 cycles.
Higher and lower precision quotients can also be calculated. The divisor
can be stored in AX0, AX1, or any of the R registers. The upper half of a
signed dividend can start in either AY1 or AF. The upper half of an
unsigned dividend must be in AF. The lower half of any dividend must be
in AY0. At the end of the divide operation, the quotient will be in AY0.

The first of the two primitive instructions “divide-sign” (DIVS) is executed
at the beginning of the division when dividing signed numbers. This oper-
ation computes the sign bit of the quotient by performing an
exclusive-OR of the sign bits of the divisor and the dividend. The AY0 reg-
ister is shifted one place so that the computed sign bit is moved into the
LSB position. The computed sign bit is also loaded into the AQ bit of the
arithmetic status register. The MSB of AY0 shifts into the LSB position of
AF, and the upper 15 bits of AF are loaded with the lower 15 R bits from
the ALU, which simply passes the Y input value straight through to the R
output. The net effect is to left shift the AF-AY0 register pair and move the
quotient sign bit into the LSB position. The operation of DIVS is illus-
trated in Figure 2-3.
ADSP-218x DSP Hardware Reference 2-15

Arithmetic Logic Unit (ALU)
MUX

L

S

B

AX1 AY1 A FAX0 AY0

 LOWER

DIVIDEND

R-BUS

LEFT SHIFT

15

MUX

 UPPER

DIVIDEND

MSB

DIVISOR MSB

AQ
X Y

ALU

R = PASS Y

15 LSBS

16

Figure 2-3. DIVS Operation
2-16 ADSP-218x DSP Hardware Reference

Computational Units
When dividing unsigned numbers, the DIVS operation is not used. Instead,
the AQ bit in the arithmetic status register (ASTAT) should be initialized to
zero by manually clearing it. The AQ bit indicates to the following opera-
tions that the quotient should be assumed positive.

The second division primitive is the “divide-quotient” (DIVQ) instruction
which generates one bit of quotient at a time and is executed repeatedly to
compute the remaining quotient bits. For unsigned single precision
divides, the DIVQ instruction is executed 16 times to produce 16 quotient
bits. For signed single precision divides, the DIVQ instruction is executed
15 times after the sign bit is computed by the DIVS operation.

DIVQ instruction shifts the AY0 register left by one bit so that the new quo-
tient bit can be moved into the LSB position. The status of the AQ bit
generated from the previous operation determines the ALU operation to
calculate the partial remainder. If AQ = 1, the ALU adds the divisor to the
partial remainder in AF. If AQ = 0, the ALU subtracts the divisor from the
partial remainder in AF. The ALU output R is offset loaded into AF just as
with the DIVS operation. The AQ bit is computed as the exclusive-OR of
the divisor MSB and the ALU output MSB, and the quotient bit is this
value inverted. The quotient bit is loaded into the LSB of the AY0 register
which is also shifted left by one bit. The DIVQ operation is illustrated in
Figure 2-4.
ADSP-218x DSP Hardware Reference 2-17

Arithmetic Logic Unit (ALU)

MUX

AX1AX0

R-BUS

DIVISOR MSB

AQX Y

ALU

1 MSB

L

S

B
AF AY0

 LOWER

DIVIDE ND

LEFT SHIFT

15

 PARTIA L

REMAINDER

16

R=Y+X IF AQ=1

R=Y-X IF AQ=0

15 LSB S

Figure 2-4. DIVQ Operation
2-18 ADSP-218x DSP Hardware Reference

Computational Units
The format of the quotient for any numeric representation can be deter-
mined by the format of the dividend and divisor. For example, let NL
represent the number of bits to the left of the binary point and NR repre-
sent the number of bits to the right of the binary point of the dividend.
Let DL represent the number of bits to the left of the binary point and DR
represent the number of bits to the right of the binary point of the divisor.
Then, the quotient has NL–DL+1 bits to the left of the binary point and
NR–DR–1 bits to the right of the binary point.

Some format manipulation may be necessary to guarantee the validity of
the quotient. For example, if both operands are signed and fully fractional
(dividend in 1.31 format and divisor in 1.15 format) the result is fully
fractional (in 1.15 format) and therefore the dividend must be smaller
than the divisor for a valid result.

To divide two integers (dividend in 32.0 format and divisor in 16.0 for-
mat) and produce an integer quotient (in 16.0 format), you must shift the
dividend one bit to the left (into 31.1 format) before dividing. Additional
discussion and code examples can be found in the ADSP-218x Instruction
Set Reference.

D IV ID E N D

N L B IT S N R B IT S

D IV IS O R B B . B B B B B B B B B B B B B B

D L B IT S D R B IT S

Q U O T IE N T B B B B .B B B B B B B B B B B B

(N L – D L + 1) B IT S (N R – D R – 1) B IT S

B B B B B . B

Figure 2-5. Quotient Format
ADSP-218x DSP Hardware Reference 2-19

Multiplier Accumulator (MAC)
The algorithm overflows if the result cannot be represented in the format
of the quotient, as calculated above, or if the divisor is zero or less than the
dividend in magnitude.

ALU Status
The ALU status bits in the ASTAT register are defined below. Complete
information about the ASTAT register and specific bit mnemonics and posi-
tions is provided in the Program Control chapter.

Multiplier Accumulator (MAC)
The multiplier/accumulator (MAC) provides high-speed multiplication,
multiplication with cumulative addition, multiplication with cumulative
subtraction, saturation and clear-to-zero functions. A feedback function
allows part of the accumulator output to be directly used as one of the
multiplicands on the next cycle.

Table 2-6. ALU Status Bits in the ASTAT Register

Flag Name Definition

AZ Zero Logical NOR of all the bits in the ALU result register. True if ALU out-
put equals zero.

AN Negative Sign bit of the ALU result. True if the ALU output is negative.

AV Overflow Exclusive-OR of the carry outputs of the two most significant adder
stages. True if the ALU overflows.

AC Carry Carry output from the most significant adder stage.

AS Sign Sign bit of the ALU X input port. Affected only by the ABS instruc-
tion.

AQ Quotient Quotient bit generated only by the DIVS and DIVQ instructions.
2-20 ADSP-218x DSP Hardware Reference

Computational Units
MAC Structure
Figure 2-6 shows a block diagram of the multiplier/accumulator.

NOTE: The MR2 registe r
is 8 bits aligned on the
lower 8 bits of both the R
and DM D bus es

Figure 2-6. MAC Block Diagram
ADSP-218x DSP Hardware Reference 2-21

Multiplier Accumulator (MAC)
The multiplier has two 16-bit input ports, X and Y, and a 32-bit product
output port, P. The 32-bit product is passed to a 40-bit adder/subtracter,
which adds or subtracts the new product from the content of the multi-
plier result (MR) register or passes the new product directly to MR. The MR
register is 40 bits wide. In this manual, we refer to the entire register as MR.
The register actually consists of three smaller registers: MR0 and MR1 which
are 16 bits wide and MR2 which is 8 bits wide.

The adder/subtracter is greater than 32 bits to allow for intermediate over-
flow in a series of multiply/accumulate operations. The multiply overflow
(MV) status bit is set when the accumulator has overflowed beyond the
32-bit boundary; that is, when there are significant (non-sign) bits in the
top nine bits of the MR register (based on twos-complement arithmetic).

The input/output registers of the MAC are similar to the ALU. The X
input port can accept data from either the MX register file or from any reg-
ister on the result (R) bus. The R bus connects the output registers of all
the computational units, permitting them to be used as input operands
directly. There are two registers in the MX register file, MX0 and MX1. These
registers can be read and written from the DMD bus. The MX register file
outputs are dual-ported so that one register can provide input to the mul-
tiplier while either one simultaneously drives the DMD bus.

The Y input port can accept data from either the MY register file or the MF
register. The MY register file has two registers, MY0 and MY1; these registers
can be read and written from the DMD bus and written from the PMD
bus. The instruction set also provides for reading these registers over the
PMD bus, but there is no direct connection; this operation uses the
PMD-DMD bus exchange unit. The MY register file outputs are also
dual-ported so that one register can provide input to the multiplier while
either one simultaneously drives the DMD bus.
2-22 ADSP-218x DSP Hardware Reference

Computational Units
The output of the adder/subtracter goes to either the MF register or the MR
register. The MF register is a feedback register which allows bits 16–31 of
the result to be used directly as the multiplier Y input on a subsequent
cycle. The 40-bit adder/subtracter register (MR) is divided into three sec-
tions: MR2, MR1, and MR0. Each of these registers can be loaded directly
from the DMD bus and output to either the DMD bus or the R bus.

Any of the registers associated with the MAC can be both read and written
in the same cycle. Registers are read at the beginning of the cycle and writ-
ten at the end of the cycle. A register read, therefore, reads the value
loaded at the end of a previous cycle. A new value written to a register can-
not be read out until a subsequent cycle. This allows an input register to
provide an operand to the MAC at the beginning of the cycle and be
updated with the next operand from memory at the end of the same cycle.
It also allows a result register to be stored in memory and updated with a
new result in the same cycle. See “Multifunction Instructions” in the
ADSP-218x DSP Instruction Set Reference for an illustration of this
same-cycle read and write.

The MAC contains a duplicate bank of registers, shown in Figure 2-6
behind the primary registers. There are actually two sets of MR, MF, MX, and
MY register files. Only one bank is accessible at a time. The additional bank
of registers can be activated for extremely fast context switching. A new
task, such as an interrupt service routine, can be executed without trans-
ferring current states to storage.

The selection of the primary or alternate bank of registers is controlled by
the ena sec_reg and dis sec_reg assembly instructions or by bit zero in
the MSTAT register. The alternate bank of registers is activated by the
ena sec_reg instruction or by setting bit zero of MSTAT to a 1. The primary
bank of registers is activated by executing the dis sec_reg instruction or
by clearing bit zero of MSTAT. Upon reset, the primary bank of registers is
active by default.
ADSP-218x DSP Hardware Reference 2-23

Multiplier Accumulator (MAC)
The ADSP-218x processors also offer an xop * xop squaring operation.
Both xops must be in the same register. This option allows single-cycle X2
and ∑X2 instructions.

The data format selection field following the two operands specifies
whether each respective operand is in Signed (S) or Unsigned (U) format.
The data format selection field must be (UU), (SS), or (RND) only. There
is no default; one of the data formats must be specified.

If RND (Round) is specified, the MAC multiplies the two source oper-
ands, rounds the result to the most significant 24 bits (or rounds bits
31-16 to 16 bits if there is no overflow from the multiply), and stores the
result in the destination register. The two multiplication operands xop and
xop are considered to be in twos complement format. Rounding can be
biased or unbiased. For more information, see “Rounding Mode” on page
2-30.

MAC Operations
This section explains the functions of the MAC, its input formats and its
handling of overflow and saturation.

Standard Functions

Table 2-7 lists the functions performed by the MAC.

Table 2-7. Standard MAC Functions

Function Description

MR = xop * yop Multiply X and Y operands.

MR = xop * xop Multiply X and X operands.

MR = MR + xop * yop Multiply X and Y operands and add result to MR.
2-24 ADSP-218x DSP Hardware Reference

Computational Units
The ADSP-218x family provides two modes for the standard multi-
ply/accumulate function: fractional mode for fractional numbers (1.15),
and integer mode for integers (16.0).

Fractional mode is selected by default upon reset or by the DIS M_MODE
instruction. Integer mode is selected by the ENA M_MODE instruction. These
instructions set or clear bit 4 of MSTAT. This bit is set to 0 for fractional
mode and 1 for integer mode. In either mode, the multiplier output P is
fed into a 40-bit adder/subtracter, which adds or subtracts the new prod-
uct with the current contents of the MR register to form the final 40-bit
result R.

In the fractional mode, the 32-bit P output is format adjusted, that is,
sign-extended and shifted one bit to the left before being added to MR. For
example, bit 31 of P lines up with bit 32 of MR (which is bit 0 of MR2) and
bit 0 of P lines up with bit 1 of MR (which is bit 1 of MR0). The LSB is
zero-filled. The fractional multiplier result format is shown in Figure 2-7.

MR = MR – xop * yop Multiply X and Y operands and subtract result from MR.

MR = 0 Clear result (MR) to zero.

Table 2-7. Standard MAC Functions

Function Description
ADSP-218x DSP Hardware Reference 2-25

Multiplier Accumulator (MAC)
In the integer mode, the 32-bit P register is not shifted before being added
to MR. Figure 2-8 shows the integer-mode result placement.

31 31 31 31 31 31 31 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

MR2 MR1 MR0

P SIGN M U LTIPLIER P OUTPU T

Figure 2-7. Fractional Multiplier Result Format

31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

MR2 MR1 MR0

31 31 31 31 31 31 31 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P SIGN MULTIPLIER P OUTPUT

Figure 2-8. Integer Multiplier Results Format
2-26 ADSP-218x DSP Hardware Reference

Computational Units
Input Formats

To facilitate multiprecision multiplications, the multiplier accepts X and
Y inputs represented in any combination of signed twos-complement for-
mat and unsigned format, as shown in Table 2-8:

The input formats are specified as part of the instruction. These are
dynamically selectable each time the multiplier is used.

The (signed x signed) mode is used when multiplying two signed single
precision numbers or the two upper portions of two signed multiprecision
numbers.

The (unsigned x signed) and (signed x unsigned) modes are used when
multiplying the upper portion of a signed multiprecision number with the
lower portion of another or when multiplying a signed single precision
number by an unsigned single precision number.

The (unsigned x unsigned) mode is used when multiplying unsigned sin-
gle precision numbers or the non-upper portions of two signed
multiprecision numbers.

Table 2-8. X and Y Inputs

X Input Y Input Code Example

Signed x Signed MR=MX0*MY0(SS)

Unsigned x Signed MR=MX0*MY0(US)

Signed x Unsigned MR=MX0*MY0(SU)

Unsigned x Unsigned MR=MX0*MY0(UU)
ADSP-218x DSP Hardware Reference 2-27

Multiplier Accumulator (MAC)
MAC Input/Output Registers

Table 2-9 lists the sources for MAC input and output registers.

MR Register Operation

As described, and shown on the block diagram, the MR register is divided
into three sections: MR0 (bits 0-15), MR1 (bits 16-31), and MR2 (bits 32-39).
Each of these registers can be loaded from the DMD bus and output to
the R bus or the DMD bus.

The 8-bit MR2 register is tied to the lower 8 bits of these buses. When MR2
is output onto the DMD bus or the R bus, it is sign extended to form a
16-bit value. MR1 also has an automatic sign-extend capability. When MR1
is loaded from the DMD bus, every bit in MR2 will be set to the sign bit
(MSB) of MR1, so that MR2 appears as an extension of MR1. To load the MR2
register with a value other than MR1’s sign extension, you must load MR2
after MR1 has been loaded. Loading MR0 affects neither MR1 nor MR2; no sign
extension occurs in MR0 loads.

Table 2-9. Sources for MAC Input and Output Registers

Source for X Input Port Source for Y Input Port Destination for R
Output Port

MX0, MX1 MY0, MY1 MR (MR2, MR1, MR0)

AR MF MF

MR0, MR1, MR2

SR0, SR1
2-28 ADSP-218x DSP Hardware Reference

Computational Units
MAC Overflow And Saturation

The adder/subtracter generates an overflow status signal (MV), which is
loaded into the processor arithmetic status (ASTAT) every time a MAC
operation is executed. The MV bit is set when the accumulator result, inter-
preted as a twos-complement number, crosses the 32-bit (MR1/MR2)
boundary. That is, MV is set if the upper nine bits of MR are not all ones or
all zeros.

The MR register has a saturation capability that sets MR to the maximum
positive or negative value if an overflow or underflow has occurred. The
saturation operation depends on the overflow status bit (MV) in the proces-
sor arithmetic status (ASTAT) and the MSB of the MR2 register.

! The MF register cannot be saturated.

The MV flag is set/cleared after MAC operations only. When the MR0,
MR1, or MR2 registers are loaded by Move instructions, the instruc-
tion MR = MR can be used to update the MV flag.

Table 2-10 summarizes the MR saturation operation.

Saturation in the MAC is an instruction rather than a mode as in the
ALU. The saturation instruction is intended to be used at the completion
of a string of multiplication/accumulations so that intermediate overflows
do not cause the accumulator to saturate.

Table 2-10. Effect of MAC Saturation Instruction

MV MSB of
MR2

MR contents after saturation

0 0 or 1 no change

1 0 00000000 0111111111111111 1111111111111111 full-scale positive

1 1 11111111 1000000000000000 0000000000000000 full-scale negative
ADSP-218x DSP Hardware Reference 2-29

Multiplier Accumulator (MAC)
Overflowing beyond the MSB of MR2 should never be allowed. The true
sign bit of the result is then irretrievably lost and saturation may not pro-
duce a correct value. It takes more than 255 overflows (MV type) to reach
this state, however.

Rounding Mode

The accumulator has the capability for rounding the 40-bit result R at the
boundary between bit 15 and bit 16. Rounding can be specified as part of
the instruction code. The rounded output is directed to either MR or MF.
When rounding is invoked with MF as the output register, register contents
in MF represent the rounded 16-bit result. Similarly, when MR is selected as
the output, MR1 contains the rounded 16-bit result; the rounding effect in
MR1 affects MR2 as well and MR2 and MR1 represent the rounded 24-bit
result.

The accumulator uses an unbiased rounding scheme. The conventional
method of biased rounding is to add a 1 into bit position 15 of the adder
chain. This method causes a net positive bias since the midway value
(when MR0=0x8000) is always rounded upward. The accumulator elimi-
nates this bias by forcing bit 16 in the result output to zero when it detects
this midway point. This has the effect of rounding odd MR1 values upward
and even MR1 values downward, yielding a zero large-sample bias assuming
uniformly distributed values.

Using x to represent any bit pattern (not all zeros), here are two examples
of rounding. The example in Figure 2-9 shows a typical rounding opera-
tion for MR; these also apply for SR.

...MR2..|.......MR1......|.......MR0......
xxxxxxxx|xxxxxxxx00100101|1xxxxxxxxxxxxxxx
........|................|1...............
xxxxxxxx|xxxxxxxx00100110|0xxxxxxxxxxxxxxx

Unrounded value:
Add 1 and carry:
Rounded value:

Figure 2-9. Typical Unbiased Multiplier Rounding Operation
2-30 ADSP-218x DSP Hardware Reference

Computational Units
The compensation to avoid net bias becomes visible when the lower 15
bits are all zero and bit 15 is one (the midpoint value) as shown in
Figure 2-10.

Biased Rounding

The BIASRND bit in the SPORT0 autobuffer control register enables biased
rounding. When the BIASRND bit is cleared (=0), the RND option in mul-
tiplier instructions uses the normal unbiased rounding operation (as
discussed in “Rounding Mode” on page 2-30). When the BIASRND bit is
set to 1, the DSP uses biased rounding instead of unbiased rounding.
When operating in biased rounding mode, all rounding operations with
MR0 set to 0x8000 round up, rather than only rounding odd MR1 values up.
For an example, see Figure 2-11

This mode only has an effect when the MR0 register contains 0x8000; all
other rounding operations work normally. This mode allows more effi-
cient implementation of bit-specified algorithms that use biased rounding,
for example the GSM speech compression routines. Unbiased rounding is
preferred for most algorithms.

...MR2..|.......MR1......|.......MR0......
xxxxxxxx|xxxxxxxx01100110|1000000000000000
........|................|1...............
xxxxxxxx|xxxxxxxx01100111|0000000000000000

Unrounded value:
Add 1 and carry:
MR bit 16=1:

xxxxxxxx|xxxxxxxx01100110|0000000000000000Rounded value:

Figure 2-10. Avoiding Net Bias in Unbiased Multiplier Rounding
Operation
ADSP-218x DSP Hardware Reference 2-31

Barrel Shifter
Barrel Shifter
The barrel shifter (shifter) provides a complete set of shifting functions for
16-bit inputs, yielding a 32-bit output. These include arithmetic shift,
logical shift and normalization. The shifter also performs derivation of
exponent and derivation of common exponent for an entire block of num-
bers. These basic functions can be combined to efficiently implement any
degree of numerical format control, including full floating-point
representation.

Shifter Structure
Figure 2-12 shows a block diagram of the shifter. The shifter can be
divided into the following components: the shifter array, the OR/PASS
logic, the exponent detector, and the exponent compare logic.

0x00 0000 8000 0x00 0001 0000 0x00 0000 0000
0x00 0001 8000 0x00 0002 0000 0x00 0002 0000
0x00 0000 8001 0x00 0001 0001 0x00 0001 0001
0x00 0001 8001 0x00 0002 0001 0x00 0002 0001
0x00 0000 7FFF 0x00 0000 FFFF 0x00 0000 FFFF
0x00 0001 7FFF 0x00 0001 FFFF 0x00 0001 FFFF

MR before RND

Biased RND result

Unbiased RND result

Figure 2-11. Bias Rounding in Multiplier Operation
2-32 ADSP-218x DSP Hardware Reference

Computational Units
The shifter array is a 16x32 barrel shifter. It accepts a 16-bit input and can
place it anywhere in the 32-bit output field, from off-scale right to
off-scale left, in a single cycle. This gives 49 possible placements within
the 32-bit field. The placement of the 16 input bits is determined by a
control code (C) and a HI/LO reference signal.

The shifter array and its associated logic are surrounded by a set of regis-
ters. The shifter input (SI) register provides input to the shifter array and
the exponent detector. The SI register is 16 bits wide and is readable and
writable from the DMD bus. The shifter array and the exponent detector
also take as inputs AR, SR or MR via the R bus. The shifter result (SR) regis-
ter is 32 bits wide and is divided into two 16-bit sections, SR0 and SR1.
The SR0 and SR1 registers can be loaded from the DMD bus and output to
either the DMD bus or the R bus. The SR register is also fed back to the
OR/PASS logic to allow double-precision shift operations.

The SE register (“shifter exponent”) is 8 bits wide and holds the exponent
during the normalize and denormalize operations. The SE register is load-
able and readable from the lower 8 bits of the DMD bus. It is a
twos-complement, 8.0 value.

The SB register (“shifter block”) is important in block floating-point oper-
ations where it holds the block exponent value, that is, the value by which
the block values must be shifted to normalize the largest value. The SB reg-
ister is 5 bits wide and holds the most recent block exponent value. The SB
register is loadable and readable from the lower 5 bits of the DMD bus. It
is a twos-complement, 5.0 value.

Whenever the SE or SB registers are output onto the DMD bus, they are
sign-extended to form a 16-bit value.
ADSP-218x DSP Hardware Reference 2-33

Barrel Shifter
MUX

16

32

SR1
REGISTER

SR0
REGISTER

16

SI
REGISTER

SB
REGISTER

MUX

MUX

SE
REGISTER

NEGATE

MUX

COMPARE
EXPONENT
DETECTOR

HI / LO SHIFTER
ARRAY

I

R
C

X

O

OR / PASS

MUXMUX

8

32

16

1616

From
INSTRUCTION

16

8

MUX

SS

DMD BUS

R - BUS

X

Figure 2-12. Shifter Block Diagram
2-34 ADSP-218x DSP Hardware Reference

Computational Units
Any of the SI, SE or SR registers can be read and written in the same cycle.
Registers are read at the beginning of the cycle and written at the end of
the cycle. All register reads, therefore, read values loaded at the end of a
previous cycle. A new value written to a register cannot be read out until a
subsequent cycle. This allows an input register to provide an operand to
the shifter at the beginning of the cycle and be updated with the next
operand at the end of the same cycle. It also allows a result register to be
stored in memory and updated with a new result in the same cycle. See
“Multifunction Instructions” in the ADSP-218x DSP Instruction Set Refer-
ence for an illustration of this same-cycle read and write.

The shifter contains a duplicate bank of registers behind the primary regis-
ters (see Figure 2-12). There are actually two sets of SE, SB, SI, SR1, and
SR0 registers. Only one bank is accessible at a time. The additional bank of
registers can be activated for extremely fast context switching. A new task,
such as an interrupt service routine, can then be executed without trans-
ferring current states to storage.

The selection of the primary or alternate bank of registers is controlled by
the ena sec_reg and dis sec_reg assembly instructions or by bit zero in
the MSTAT register. The alternate bank of registers is activated by the
ena sec_reg instruction or by setting bit zero of MSTAT to a 1. The primary
bank of registers is activated by executing the dis sec_reg instruction or
by clearing bit zero of MSTAT. Upon reset, the primary bank of registers is
active by default.

The shifting of the input is determined by a control code (C) and a HI/LO
reference signal. The control code is an 8-bit signed value which indicates
the direction and number of places the input is to be shifted. Positive
codes indicate a left shift (upshift) and negative codes indicate a right shift
(downshift). The control code can come from three sources: the content
of the shifter exponent (SE) register, the negated content of the SE register
or an immediate value from the instruction.
ADSP-218x DSP Hardware Reference 2-35

Barrel Shifter
The HI/LO signal determines the reference point for the shifting. In the HI
state, all shifts are referenced to SR1 (the upper half of the output field),
and in the LO state, all shifts are referenced to SR0 (the lower half). The
HI/LO reference feature is useful when shifting 32-bit values since it allows
both halves of the number to be shifted with the same control code. The
HI/LO reference signal is selectable each time the shifter is used.

The shifter fills any bits to the right of the input value in the output field
with zeros, and bits to the left are filled with the extension bit (X). The
extension bit can be fed by three possible sources depending on the
instruction being performed. The three sources are the MSB of the input,
the AC bit from the arithmetic status register (ASTAT) or a zero.

Figure 2-13 on page 2-37 shows the shifter array output as a function of
the control code and HI/LO signal.

The OR/PASS logic allows the shifted sections of a multiprecision num-
ber to be combined into a single quantity. In some shifter instructions, the
shifted output may be logically ORed with the contents of the SR register;
the shifter array is bitwise ORed with the current contents of the SR regis-
ter before being loaded there. When the [SR OR] option is not used in the
instruction, the shifter array output is passed through and loaded into the
shifter result (SR) register unmodified.

The exponent detector derives an exponent for the shifter input value.
The exponent detector operates in one of three ways, which determine
how the input value is interpreted. In the HI state, the input is interpreted
as a single precision number or the upper half of a double precision num-
ber. The exponent detector determines the number of leading sign bits
and produces a code that indicates how many places the input must be
up-shifted to eliminate all but one of the sign bits. The code is negative so
that it can become the effective exponent for the mantissa formed by
removing the redundant sign bits.
2-36 ADSP-218x DSP Hardware Reference

Computational Units
Control Code Shifter Array Output
HI Reference

+16 to +127 +32 to +127 00000000 00000000 00000000 00000000
+15 +31 R0000000 00000000 00000000 00000000
+14 +30 PR000000 00000000 00000000 00000000
+13 +29 NPR00000 00000000 00000000 00000000
+12 +28 MNPR0000 00000000 00000000 00000000
+11 +27 LMNPR000 00000000 00000000 00000000
+10 +26 KLMNPR00 00000000 00000000 00000000
+9 +25 JKLMNPR0 00000000 00000000 00000000
+8 +24 IJKLMNPR 00000000 00000000 00000000
+7 +23 HIJKLMNP R0000000 00000000 00000000
+6 +22 GHIJKLMN PR000000 00000000 00000000
+5 +21 FGHIJKLM NPR00000 00000000 00000000
+4 +20 EFGHIJKL MNPR0000 00000000 00000000
+3 +19 DEFGHIJK LMNPR000 00000000 00000000
+2 +18 CDEFGHIJ KLMNPR00 00000000 00000000
+1 +17 BCDEFGHI JKLMNPR0 00000000 00000000
0 +16 ABCDEFGH IJKLMNPR 00000000 00000000

-1 +15 XABCDEFG HIJKLMNP R0000000 00000000
-2 +14 XXABCDEF GHIJKLMN PR000000 00000000
-3 +13 XXXABCDE FGHIJKLM NPR00000 00000000
-4 +12 XXXXABCD EFGHIJKL MNPR0000 00000000
-5 +11 XXXXXABC DEFGHIJK LMNPR000 00000000
-6 +10 XXXXXXAB CDEFGHIJ KLMNPR00 00000000
-7 +9 XXXXXXXA BCDEFGHI JKLMNPR0 00000000
-8 +8 XXXXXXXX ABCDEFGH IJKLMNPR 00000000
-9 +7 XXXXXXXX XABCDEFG HIJKLMNP R0000000
-10 +6 XXXXXXXX XXABCDEF GHIJKLMN PR000000
-11 +5 XXXXXXXX XXXABCDE FGHIJKLM NPR00000
-12 +4 XXXXXXXX XXXXABCD EFGHIJKL MNPR0000
-13 +3 XXXXXXXX XXXXXABC DEFGHIJK LMNPR000
-14 +2 XXXXXXXX XXXXXXAB CDEFGHIJ KLMNPR00
-15 +1 XXXXXXXX XXXXXXXA BCDEFGHI JKLMNPR0
-16 0 XXXXXXXX XXXXXXXX ABCDEFGH IJKLMNPR
-17 -1 XXXXXXXX XXXXXXXX XABCDEFG HIJKLMNP
-18 -2 XXXXXXXX XXXXXXXX XXABCDEF GHIJKLMN
-19 -3 XXXXXXXX XXXXXXXX XXXABCDE FGHIJKLM
-20 -4 XXXXXXXX XXXXXXXX XXXXABCD EFGHIJKL
-21 -5 XXXXXXXX XXXXXXXX XXXXXABC DEFGHIJK
-22 -6 XXXXXXXX XXXXXXXX XXXXXXAB CDEFGHIJ
-23 -7 XXXXXXXX XXXXXXXX XXXXXXXA BCDEFGHI
-24 -8 XXXXXXXX XXXXXXXX XXXXXXXX ABCDEFGH
-25 -9 XXXXXXXX XXXXXXXX XXXXXXXX XABCDEFG
-26 -10 XXXXXXXX XXXXXXXX XXXXXXXX XXABCDEF
-27 -11 XXXXXXXX XXXXXXXX XXXXXXXX XXXABCDE
-28 -12 XXXXXXXX XXXXXXXX XXXXXXXX XXXXABCD
-29 -13 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXABC
-30 -14 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXAB
-31 -15 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXA
-32 to -128 -16 to -128 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

LEGEND:
ABCDEFGHIJKLMNPR represents
the 16-bit input pattern

X stands for the extension bit
LO Reference

Figure 2-13. Shifter Array Output
ADSP-218x DSP Hardware Reference 2-37

Barrel Shifter
In the HI-extend state (HIX), the input is interpreted as the result of an add
or subtract performed in the ALU which may have overflowed. Therefore
the exponent detector takes the arithmetic overflow (AV) status into con-
sideration. If AV is set, then a +1 exponent is output to indicate an extra bit
is needed in the normalized mantissa (the ALU Carry bit); if AV is not set,
then HI-extend functions exactly like the HI state. When performing a
derive exponent function in HI or HI-extend modes, the exponent detector
also outputs a shifter sign (SS) bit which is loaded into the arithmetic sta-
tus register (ASTAT). The sign bit is the same as the MSB of the shifter
input except when AV is set; when AV is set in HI-extend state, the MSB is
inverted to restore the sign bit of the overflowed value.

In the LO state, the input is interpreted as the lower half of a double preci-
sion number. In the LO state, the exponent detector interprets the SS bit in
the arithmetic status register (ASTAT) as the sign bit of the number. The SE
register is loaded with the output of the exponent detector only if SE con-
tains –15. This occurs only when the upper half–which must be processed
first–contained all sign bits. The exponent detector output is also offset by
–16 to account for the fact that the input is actually the lower half of a
32-bit value. Figure 2-14 gives the exponent detector characteristics for all
three modes.

The exponent compare logic is used to find the largest exponent value in
an array of shifter input values. The exponent compare logic in conjunc-
tion with the exponent detector derives a block exponent. The comparator
compares the exponent value derived by the exponent detector with the
value stored in the shifter block exponent (SB) register and updates the SB
register only when the derived exponent value is larger than the value in SB
register. See the examples shown in the following sections.
2-38 ADSP-218x DSP Hardware Reference

Computational Units
S = Sign bit

N = Non-sign bit

LEGEND

HI Mode HIX Mode

Shifter Array Input Output AV Output

1 DDDDDDDD DDDDDDDD +1
SNDDDDDD DDDDDDDD 0 0 SNDDDDDD DDDDDDDD 0
SSNDDDDD DDDDDDDD -1 0 SSNDDDDD DDDDDDDD -1
SSSNDDDD DDDDDDDD -2 0 SSSNDDDD DDDDDDDD -2
SSSSNDDD DDDDDDDD -3 0 SSSSNDDD DDDDDDDD -3
SSSSSNDD DDDDDDDD -4 0 SSSSSNDD DDDDDDDD -4
SSSSSSND DDDDDDDD -5 0 SSSSSSND DDDDDDDD -5
SSSSSSSN DDDDDDDD -6 0 SSSSSSSN DDDDDDDD -6
SSSSSSSS NDDDDDDD -7 0 SSSSSSSS NDDDDDDD -7
SSSSSSSS SNDDDDDD -8 0 SSSSSSSS SNDDDDDD -8
SSSSSSSS SSNDDDDD -9 0 SSSSSSSS SSNDDDDD -9
SSSSSSSS SSSNDDDD -10 0 SSSSSSSS SSSNDDDD -10
SSSSSSSS SSSSNDDD -11 0 SSSSSSSS SSSSNDDD -11
SSSSSSSS SSSSSNDD -12 0 SSSSSSSS SSSSSNDD -12
SSSSSSSS SSSSSSND -13 0 SSSSSSSS SSSSSSND -13
SSSSSSSS SSSSSSSN -14 0 SSSSSSSS SSSSSSSN -14
SSSSSSSS SSSSSSSS -15 0 SSSSSSSS SSSSSSSS -15

LO Mode

SS Output

S NDDDDDDD DDDDDDDD -15
S SNDDDDDD DDDDDDDD -16
S SSNDDDDD DDDDDDDD -17
S SSSNDDDD DDDDDDDD -18
S SSSSNDDD DDDDDDDD -19
S SSSSSNDD DDDDDDDD -20
S SSSSSSND DDDDDDDD -21
S SSSSSSSN DDDDDDDD -22
S SSSSSSSS NDDDDDDD -23
S SSSSSSSS SNDDDDDD -24
S SSSSSSSS SSNDDDDD -25
S SSSSSSSS SSSNDDDD -26
S SSSSSSSS SSSSNDDD -27
S SSSSSSSS SSSSSNDD -28
S SSSSSSSS SSSSSSND -29
S SSSSSSSS SSSSSSSN -30
S SSSSSSSS SSSSSSSS -31

Shifter Array Input

Shifter Array Input

D = Don't care bit

Figure 2-14. Exponent Detector Characteristics
ADSP-218x DSP Hardware Reference 2-39

Barrel Shifter
Shifter Operations
The shifter performs the following functions (instruction mnemonics
shown in parentheses):

• Arithmetic Shift (ASHIFT)

• Logical Shift (LSHIFT)

• Normalize (NORM)

• Derive Exponent (EXP)

• Block Exponent Adjust (EXPADJ)

These basic shifter instructions can be used in a variety of ways, depending
on the underlying arithmetic requirements. The following sections present
single and multiple precision examples for these functions:

• Derivation of a Block Exponent

• Immediate Shifts

• Denormalization

• Normalization

The shift functions (arithmetic shift, logical shift, and normalize) can be
optionally specified with [SR OR] and HI/LO modes to facilitate multipreci-
sion operations. [SR OR] logically ORs the shift result with the current
contents of SR. This option is used to join two 16-bit quantities into a
32-bit value in SR. When [SR OR] is not used, the shift value is passed
through to SR directly. The HI and LO modifiers reference the shift to the
upper or lower half of the 32-bit SR register. These shift functions take
inputs from either the SI register or any other result register and load the
32-bit shifted result into the SR register.
2-40 ADSP-218x DSP Hardware Reference

Computational Units
Shifter Input/Output Registers

Table 2-11 shows the sources of shifter input and output.

Derive Block Exponent

The EXPADJ instruction detects the exponent of the number largest in
magnitude in an array of numbers. The steps for a typical block exponent
derivation are as follows:

1. Load SB with –16. The SB register contains the exponent for the
entire block. The possible values at the conclusion of a series of
EXPADJ operations range from –15 to 0. The exponent compare
logic updates the SB register if the new value is greater than the cur-
rent value. Loading the register with –16 initializes it to a value
certain to be less than any actual exponents detected.

2. Process the first array element, as follows:

Array(1) = 11110101 10110001
Exponent = –3

–3 > SB (–16)
SB gets –3

Table 2-11. Shifter Input and Output

Source for Shifter Input Destination for Shifter Output

SI SR (SR0, SR1)

AR

MR0, MR1, MR2

SR0, SR1
ADSP-218x DSP Hardware Reference 2-41

Barrel Shifter
3. Process next array element, as follows:

Array(2)= 00000001 01110110
Exponent = –6

–6 < –3
SB remains –3

4. Continue processing array elements.

When and if an array element is found whose exponent is greater than SB,
that value is loaded into SB. When all array elements have been processed,
the SB register contains the exponent of the largest number in the entire
block. No normalization is performed. EXPADJ is purely an inspection
operation. The value in SB could be transferred to SE and used to normal-
ize the block on the next pass through the shifter. Or, SB could be
associated with that data for subsequent interpretation.

Immediate Shifts

An immediate shift simply shifts the input bit pattern to the right (down-
shift) or left (upshift) by a given number of bits. Immediate shift
instructions use the data value in the instruction itself to control the
amount and direction of the shifting operation. (See the ADSP-218x DSP
Instruction Set Reference for examples of this instruction.) The data value
controlling the shift is an 8-bit signed number. The SE register is not used
or changed by an immediate shift.

The following example shows the input value downshifted relative to the
upper half of SR (SR1). This is the (HI) version of the shift:

SI=0xB6A3;
SR=LSHIFT SI BY –5 (HI);

Input: 10110110 10100011

Shift value: –5

SR: 00000101 10110101 00011000 000000
2-42 ADSP-218x DSP Hardware Reference

Computational Units
Here is the same input value shifted in the other direction, referenced to
the lower half (LO) of SR:

SI=0xB6A3;
SR=LSHIFT SI BY 5 (LO);

Input: 10110110 10100011

Shift value: +5

SR: 00000000 00010110 11010100 01100000

In addition to the direction of the shifting operation, the shift may be
either arithmetic (ASHIFT) or logical (LSHIFT). For example, the following
shows a logical shift, relative to the upper half of SR (HI):

SI=0xB6A3;
SR=LSHIFT SI BY –5 (HI);

Input: 10110110 10100011
Shift value: -5

SR: 00000101 10110101 00011000 00000000

This example shows an arithmetic shift of the same input and shift code:

SI=0xB6A3;
SR=ASHIFT SI BY –5 (HI);

Input: 10110110 10100011

Shift value: -5

SR: 11111101 10110101 00011000 00000000
ADSP-218x DSP Hardware Reference 2-43

Barrel Shifter
Denormalize

Denormalizing refers to shifting a number according to a predefined expo-
nent. The operation is effectively a floating-point to fixed-point
conversion.

Denormalizing requires a sequence of operations. First, the SE register
must contain the exponent value. This value may be explicitly loaded or
may be the result of some previous operation. Next the shift itself is per-
formed, taking its shift value from the SE register, not from an immediate
data value.

Two examples of denormalizing a double-precision number are given
below. The first shows a denormalization in which the upper half of the
number is shifted first, followed by the lower half. Since computations
may produce output in either order, the second example shows the same
operation in the other order, i.e. lower half first.

Always select the arithmetic shift for the higher half (HI) of the twos-com-
plement input (or logical for unsigned). Likewise, the first half processed
does not use the [SR OR] option.

Modifier = HI, No [SR OR], Shift operation = Arithmetic, SE = –3

First Input: 10110110 10100011 (upper half of desired result)

SR: 11110110 11010100 01100000 00000000

Now the lower half is processed. Always select a logical shift for the lower
half of the input. Likewise, the second half processed must use the [SR OR]
option to avoid overwriting the previous half of the output value.

Modifier = LO, [SR OR], Shift operation = Logical, SE = –3

Second Input: 01110110 01011101 (lower half of desired result)

SR: 11110110 11010100 01101110 11001011
2-44 ADSP-218x DSP Hardware Reference

Computational Units
Here is the same input processed in the reverse order. The higher half is
always arithmetically shifted and the lower half is logically shifted. The
first input is passed straight through to SR, but the second half is ORed to
create a double-precision value in SR.

Modifier = LO, No [SR OR], Shift operation = Logical, SE = –3

First Input: 01110110 01011101 (lower half of desired result)

SR: 00000000 00000000 00001110 11001011

Modifier = HI, [SR OR], Shift operation = Arithmetic, SE = –3

Second Input: 10110110 10100011 (upper half of desired result)

SR: 11110110 11010100 01101110 11001011

Normalize

Numbers with redundant sign bits require normalizing. Normalizing a
number is the process of shifting a twos-complement number within a
field so that the rightmost sign bit lines up with the MSB position of the
field and recording how many places the number was shifted. The opera-
tion can be thought of as a fixed-point to floating-point conversion,
generating an exponent and a mantissa.

Normalizing is a two-stage process. The first stage derives the exponent.
The second stage does the actual shifting. The first stage uses the EXP
instruction which detects the exponent value and loads it into the SE regis-
ter. This instruction (EXP) recognizes a (HI) and (LO) modifier. The second
stage uses the NORM instruction. The NORM instruction recognizes (HI) and
(LO) and also has the [SR OR] option. The NORM instruction uses the
negated value of the SE register as its shift control code. The negated value
is used so that the shift is made in the correct direction.
ADSP-218x DSP Hardware Reference 2-45

Barrel Shifter
Here is a normalization example for a single precision input:

SE=EXP AR (HI);

Detects Exponent With Modifier = HI

Input: 11110110 11010100

SE set to: –3

Normalize, with modifier = HI Shift driven by value in SE

Input: 11110110 11010100

SR: 10110110 10100000 00000000 00000000

For a single precision input, the normalize operation can use either the
(HI) or (LO) modifier, depending on whether you want the result in SR1 or
SR0, respectively.

Double precision values follow the same general scheme. The first stage
detects the exponent and the second stage normalizes the two halves of the
input. For double precision, however, there are two operations in each
stage.

For the first stage, the upper half of the input must be operated on first.
This first exponent derivation loads the exponent value into SE. The sec-
ond exponent derivation, operating on the lower half of the number will
not alter the SE register unless SE = –15. This happens only when the first
half contained all sign bits. In this case, the second operation will load a
value into SE. (See Figure 2-14 on page 2-39) This value is used to control
both parts of the normalization that follows.

For the second stage, now that SE contains the correct exponent value, the
order of operations is immaterial. The first half (whether HI or LO) is nor-
malized without the [SR OR] and the second half is normalized with [SR
OR] to create one double-precision value in SR. The (HI) and (LO) modifiers
identify which half is being processed.
2-46 ADSP-218x DSP Hardware Reference

Computational Units
Here is a complete example of a typical double precision normalization.

1. Detect Exponent, Modifier = HI

First Input: 11110110 11010100 (Must be upper half)

SE set to: -3

2. Detect Exponent, Modifier = LO

Second Input: 01101110 11001011

SE unchanged, still -3

3. Normalize, Modifier=HI, No [SR OR], SE = –3

First Input: 11110110 11010100

SR: 10110110 10100000 00000000 00000000

4. Normalize, Modifier=LO, [SR OR], SE = –3

Second Input: 01101110 11001011

SR: 10110110 10100011 01110110 01011000

If the upper half of the input contains all sign bits, the SE register value is
determined by the second derive exponent operation as shown in the fol-
lowing example.

1. Detect Exponent, Modifier = HI

First Input: 11111111 11111111 (Must be upper half)

SE set to: -15

2. Detect Exponent, Modifier = LO

Second Input: 11110110 11010100

SE now set to: -19
ADSP-218x DSP Hardware Reference 2-47

Barrel Shifter
3. Normalize, Modifier=HI, No [SR OR], SE = –19 (negated)

First Input: 11111111 11111111

SR: 00000000 00000000 00000000 00000000

All values of SE less than –15 (resulting in a shift of +16 or more) upshift
the input completely off scale.

4. Normalize, Modifier=LO, [SR OR], SE = –19 (negated)

Second Input: 11110110 11010100

SR: 10110110 10100000 00000000 00000000

There is one additional normalization situation, requiring the HI-extended
(HIX) state. This is specifically when normalizing ALU results (AR) that
may have overflowed. This operation reads the arithmetic status word
(ASTAT) overflow bit (AV) and the carry bit (AC) in conjunction with the
value in AR. AV is set (1) if an overflow has occurred. AC contains the true
sign of the twos-complement value.

For example, given these conditions:

AR = 11111010 00110010

AV = 1, indicating overflow
AC = 0, the true sign bit of this value

1. Detect Exponent, Modifier = HIX

SE gets set to +1

2. Normalize, Modifier = HI, SE = 1

AR = 11111010 00110010

SR = 01111101 00011001

The AC bit is supplied as the sign bit, shown in bold above.
2-48 ADSP-218x DSP Hardware Reference

Computational Units
The HIX operation executes properly whether or not there has actually
been an overflow. Consider this example:

AR = 11100011 01011011

AV = 0, indicating no overflow
AC = 0, not meaningful if AV = 0

1. Detect Exponent, Modifier = HIX

SE set to –2

2. Normalize, Modifier = HI, SE = –2

AR = 11100011 01011011

SR = 10001101 01101000 00000000 00000000

The AC bit is not used as the sign bit.

A brief examination of Figure 2-13 on page 2-37 shows that the HIX mode
is identical to the HI mode when AV is not set. When the NORM, LO opera-
tion is done, the extension bit is zero; when the NORM, HI operation is done,
the extension bit is AC.
ADSP-218x DSP Hardware Reference 2-49

Barrel Shifter
2-50 ADSP-218x DSP Hardware Reference

3 PROGRAM SEQUENCER
Figure 3-0.

Table 3-0.

Listing 3-0.
Overview
This chapter describes the program sequencer of the ADSP-218x family
processors. The program sequencer circuitry controls the flow of program
execution. It contains an interrupt controller and status and condition
logic.

The program sequencer generates a stream of instruction addresses and
provides flexible control of program flow. It allows sequential instruction
execution, zero-overhead looping, sophisticated interrupt servicing, and
single-cycle branching with jumps and calls (both conditional and
unconditional).

This chapter discusses each function on the program sequencer. It also dis-
cusses both the program sequencer logic and the following instructions
used to control program flow:

• DO UNTIL

• JUMP

• CALL

• RTS (Return from Subroutine)

• RTI (Return from Interrupt)

• IDLE

For a complete description of each instruction, refer to the ADSP-218x
DSP Instruction Set Reference.
ADSP-218x DSP Hardware Reference 3-1

Program Sequencer Structure
Program Sequencer Structure
Figure 3-1 shows a block diagram of the program sequencer.

INTERRUPT

CONTROLLE R

CONDITION
LOGIC

LOOP
STACK

DM D BUS

NEXT
ADDRESS
SOURCE
SELECT

INCREM ENT

PROGRAM
COUNTER

NEXT ADDRESS MUX

PC
STACK

PM A BUS

M UX

STATUS
REGISTERS

STATUS
STACK

COUNT
STACK

CNTR
(COUNTER)
CE OUT

CONDITION CODE

ADDRESS OF JUM P/CALL

FUNCTION FIELD

ADDRESS OF LAST
INSTRUCTION IN LOOP

&
TERM INATION

CONDITION

FROM INSTRUCTION REGISTER

LOOP
COM PARATOR

ARITHM ETIC
STATUS

(from ALU)

INTERRUPTS

M UX

M UX

from
FI Pin

Figure 3-1. Program Sequencer Block Diagram
3-2 ADSP-218x DSP Hardware Reference

Program Sequencer
The sections that follow describe the functions shown in the diagram in
detail.

Next Address Select Logic
While the processor is executing an instruction, the program sequencer
prefetches the next instruction. The sequencer’s next address select logic
generates a program memory address (for the prefetch) from one of four
sources:

• Program Counter (PC) incrementer

• PC stack

• Instruction register

• Interrupt controller

The next address circuit (shown in Figure 3-1) selects which of these
sources is used, based on inputs from the Instruction register, condition
logic, loop comparator and interrupt controller. The next instruction
address is then output on the PMA bus for the prefetch.

The PC incrementer is selected as the source of the next address if program
flow is sequential. This is also the case when a conditional jump or return
is not taken and when a DO UNTIL loop terminates. The output of the PC
incrementer is driven onto the PMA bus and is loaded back into the pro-
gram counter to begin the next cycle.

The PC stack is used as the source for the next address when a return from
subroutine or return from interrupt is executed. The top stack value is also
used as the next address when returning to the top of a DO UNTIL loop.

The Instruction register provides the next address when a direct jump is
taken. The 14-bit jump address is embedded in the instruction word.
ADSP-218x DSP Hardware Reference 3-3

Program Sequencer Structure
The interrupt controller provides the next program memory address when
servicing an interrupt. Upon recognizing a valid interrupt, the processor
jumps to the interrupt vector location corresponding to the active inter-
rupt request.

Another possible source for the next address is one of the I4-I7 index reg-
isters of DAG2 (Data Address Generator 2), used when a register indirect
jump is executed, as shown in the following instruction:

JUMP (I4);

In this example, the PC is loaded from DAG2 via the PMA bus. (See
Chapter 4, “Data Address Generators” for detailed information about the
data address generators.)

Program Counter Register and Stack
The PC is a 14-bit register that always contains the address of the currently
executing instruction. The output of the PC is fed into a 14-bit incre-
menter, which adds 1 to the current PC value. The output of the
incrementer can be selected by the next address multiplexer to fetch the
next sequential instruction.

Associated with the PC is a 14-bit by 16-word stack that is pushed with the
output of the incrementer when a CALL instruction is executed. The PC
stack is also pushed when a DO UNTIL is executed and when an interrupt is
processed. For interrupts, however, the incrementer is disabled so that the
current PC value (instead of PC+1) is pushed. This allows the current
instruction, which is aborted, to be refetched upon returning from the
interrupt service routine. The pushing and popping of the PC stack occurs
automatically in all of these cases. The stack can also be manually popped
with the POP instruction.

A special instruction is provided for reading (popping) or writing (push-
ing) the top value of the PC stack. This instruction uses the pseudo
register TOPPCSTACK, described at the end of this chapter.
3-4 ADSP-218x DSP Hardware Reference

Program Sequencer
The output of the next address multiplexer is fed back to the PC, which
normally reloads it at the end of each processor cycle. In the case of a reg-
ister indirect jump, however, DAG2 drives the PMA bus with the next
instruction address and the PC is loaded directly from the PMA bus.

Loop Counter Register and Stack
The counter and count stack provide the program sequencer with a pow-
erful looping mechanism. The counter is a 14-bit register with automatic
post-decrement capability that controls the flow of program loops, which
execute a predetermined number of times. Count values are 14-bit
unsigned-magnitude values.

Before entering the loop, the counter register (CNTR) is loaded with the
desired loop count from the lower 14 bits of the DMD bus. The actual
loop count N is loaded, as opposed to N–1. This is due to the operation of
the counter expired (CE) status logic, which tests CE (and automatically
post-decrements the counter) at the end of a DO UNTIL loop that uses CE as
its termination condition. CE is tested at the beginning of each processor
cycle and the counter is decremented at the end; therefore CE is asserted
when the counter reaches 1 so that the loop executes N times.

The counter may also be tested and automatically decremented by a con-
ditional jump instruction that tests NOT CE. The counter is not
decremented when NOT CE is checked as part of a conditional return or
conditional arithmetic instruction.

The counter may be read directly over the DMD bus at any time without
affecting its contents. When reading the counter, the upper two bits of the
DMD bus are padded with zeroes.
ADSP-218x DSP Hardware Reference 3-5

Program Sequencer Structure
The count stack is a 14-bit by 4-word stack that allows nesting of loops by
storing temporarily dormant loop counts. When a new value is loaded
into the counter from the DMD bus, the current counter value is auto-
matically pushed onto the count stack. The count stack is automatically
popped whenever the CE status is tested and is true, thereby resuming exe-
cution of the outer loop (if any). The count stack may also be popped
manually if an early exit from a loop is taken.

There are two exceptions to the automatic pushing of the count stack. A
counter load from the DMD bus does not cause a count stack push if
there is no valid value in the counter, because a stack location would be
wasted on the invalid counter value. There is no valid value in the counter
after a system reset and also after the CE condition is tested when the count
stack is empty. The count stack empty status bit in the SSTAT register indi-
cates when the stack is empty.

The second exception is provided explicitly by the special purpose syntax
OWRCNTR (overwrite counter). Writing a value to OWRCNTR overwrites the
counter with the new value, and nothing is pushed onto the count stack.
OWRCNTR cannot be read (i.e. used as a source register) and must not be
written in the last instruction of a DO UNTIL loop.

Loop Comparator and Stack
The DO UNTIL instruction initiates a zero-overhead loop using the loop
comparator and loop stack of the program sequencer.

On every processor cycle, the loop comparator compares the next address
generated by the program sequencer to the address of the last instruction
of the loop (which is embedded in the DO UNTIL instruction). The address
of the first instruction in the loop is maintained on the top of the PC
stack. When the last instruction in the loop is executed the processor con-
ditionally jumps to the beginning of the loop, eliminating the branching
overhead otherwise incurred in loop execution.
3-6 ADSP-218x DSP Hardware Reference

Program Sequencer
The loop stack stores the last instruction addresses and termination condi-
tions of temporarily dormant loops. Up to four levels can be stored. The
only extra cycle associated with the nesting of DO UNTIL loops is the execu-
tion of the DO UNTIL instruction itself, since the pushing and popping of
all stacks associated with the looping hardware is automatic.

When using the counter expired (CE) status as the termination condition
for the loop, an additional cycle is required for the initial loading of the
counter. Table 3-1 shows the termination conditions that can be used
with DO UNTIL.

Table 3-1. DO UNTIL Termination Condition Logic

Syntax Status Condition True If:

EQ Equal Zero AZ = 1

NE Not Equal Zero AZ = 0

LT Less Than Zero AN .XOR. AV = 1

GE Greater Than or Equal Zero AN .XOR. AV = 0

LE Less Than or Equal Zero (AN .XOR. AV) .OR. AZ = 1

GT Greater Than Zero (AN .XOR. AV) .OR. AZ = 0

AC ALU Carry AC = 1

NOT AC Not ALU Carry AC = 0

AV ALU Overflow AV = 1

NOT AV Not ALU Overflow AV = 0

MV MAC Overflow MV = 1

NOT MV Not MAC Overflow MV = 0
ADSP-218x DSP Hardware Reference 3-7

Program Sequencer Structure
When a DO UNTIL instruction is executed, the 14-bit address of the last
instruction and a 4-bit termination condition (both contained in the DO
UNTIL instruction) are pushed onto the 18-bit by 4-word loop stack.
Simultaneously, the PC incrementer output is pushed onto the PC stack.
Since the DO UNTIL instruction is located just before the first instruction of
the loop, the PC stack then contains the first loop instruction address, and
the loop stack contains the last loop instruction address and termination
condition. The non-empty state of the loop stack activates the loop com-
parator which compares the address on top of the loop stack with the
address of the next instruction. When these two addresses are equal, the
loop comparator notifies the next address source selector that the last
instruction in the loop will be executed on the next cycle.

At this point, there are three possible results depending on the type of
instruction at the end of the loop. Case 1 illustrates the most typical situa-
tion. Cases 2 and 3 are also allowed but involve greater program
complexity for proper execution.

NEG X Input Sign Negative AS = 1

POS X Input Sign Positive AS = 0

CE Counter Expired

FOREVER Always

Table 3-1. DO UNTIL Termination Condition Logic (Cont’d)

Syntax Status Condition True If:
3-8 ADSP-218x DSP Hardware Reference

Program Sequencer
Case 1—Last instruction in loop IS NOT a program flow instruction

If the last instruction in the loop is not a jump, call, return, or idle, the
next address circuit will select the next address based on the termination
condition stored on the top of the loop stack. If the condition is false, the
top address on the PC stack is selected, causing a fetch of the first instruc-
tion of the loop. If the termination condition is true, the PC incrementer is
chosen, causing execution to fall out of the loop. The loop stack, PC
stack, and counter stack (if being used) are then popped.

! Conditional arithmetic instructions execute based on the condition
explicitly stated in the instruction, whereas the loop sequencing is
controlled by the (implicit) termination condition contained on top
of the stack.

Case 2—Last instruction in loop IS a program flow instruction

If the last instruction in the loop is a jump, call, or return, the explicitly
stated instruction takes precedence over the implicit sequencing of the
loop. If the condition in the instruction is false, normal loop sequencing
takes place as described for Case 1.

If the condition in the instruction is true, however, program control trans-
fers to the jump/call/return address. Any actions that would normally
occur upon an end-of-loop detection do not take place: fetching the first
instruction of the loop, falling out of the loop and popping the loop stack,
PC stack, and counter stack, or decrementing the counter.

! For a return instruction, control is passed back to the top of the loop
since the PC stack contains the beginning address of the loop.
ADSP-218x DSP Hardware Reference 3-9

Program Sequencer Structure
Case 3—Last instruction in loop is an IDLE instruction

If the last instruction in the loop is an IDLE, program flow is controlled by
the IDLE instruction rather than the loop. When the IDLE instruction is
executed, the processor enters a low-power wait-for-interrupt state. When
the processor is interrupted, loop execution terminates and program exe-
cution continues with the first instruction following the loop.

" Caution is required when ending a loop with a JUMP, CALL, RETURN,
or IDLE instruction, or when making a premature exit from a loop.
Since none of the loop sequencing mechanisms are active while the
jump/call/return is being performed, the loop, PC, and counter
stacks are left with the looping information (since they are not
popped).

In this situation, a manual pop of each of the relevant stacks is
required to restore the correct state of the processor. A subroutine
call poses this problem only when it is the last instruction in a loop;
in such cases, the return causes program flow to transfer to the
instruction just after the loop. Calls within a loop that are not the
last instruction operate as in Case 1.

The only restriction concerning DO UNTIL loops is that nested loops cannot
terminate on the same instruction. Since the loop comparator can only
check for one loop termination at a time, falling out of an inner loop by
incrementing the PC would go beyond the end address of the outer loop if
they terminated on the same instruction.

! The do-loop hardware has no knowledge of the PMOVLAY register.
Therefore, the do-loop hardware controls the program flow when-
ever the PC reaches the end-of-loop address, no matter which PM
Overlay page the program is running.
3-10 ADSP-218x DSP Hardware Reference

Program Sequencer
Program Control Instructions
The following sections describe the primary instructions used to control
program flow.

JUMP Instruction
The ADSP-218x processors have two types of JUMP instructions: direct
JUMP instruction and register indirect JUMP instructions.

Direct JUMP Instructions

In direct JUMP instructions, the 14-bit jump address is embedded in the
JUMP instruction word. When a direct JUMP instruction is decoded, the
jump address is input directly to the next address MUX of the program
sequencer. The address is driven onto the PMA bus and fed back to the PC
for the next cycle. For example, the instruction

JUMP fir_start;

jumps to the address of the label fir_start.

Register Indirect JUMP Instructions

In register indirect JUMP instructions, the jump address is supplied by one
of the I registers of DAG2 (I4, I5, I6, or I7). (See Chapter 4, “Data
Address Generators” for a full description of the data address generators.)
The address is driven onto the PMA bus by DAG2 and is loaded into the
PC on the next cycle. For example, the instruction

JUMP (I4);

will jump to the address contained in the I4 register.
ADSP-218x DSP Hardware Reference 3-11

Program Control Instructions
The indirect JUMP instruction can be a cycle-saving alternative to hardware
loops since the jump takes only a single cycle instead of the two the
do-loop hardware setup requires. Listing 3-1 and Listing 3-2 illustrate
how you can substitute an indirect JUMP instruction for a nested loop. In
this example, the indirect JUMP instruction is substituted for nested loops
with a high count outer loop and a variable low-count inner loop that
contains only a few instructions.

Listing 3-1. Nested Loop

CNTR = 10000;
do outer_loop until ce;

...
CNTR = DM(mycounter); /* values between 1 and 2^16 –1

 allowed */
do inner_loop until ce;

inner_loop: <instr_a>;
<instr_b>
...

outer_loop: <instr_x>

Listing 3-2. Indirect JUMP

ay0 = DM(mycounter); /* only values between 0 and 4
allowed */

ar = inner_loop;
ar = ar – ay0;
i4 = ar;

CNTR = 10000;
do outer_loop until ce;

...
jump (i4);
<instr_a>;
<instr_a>;
<instr_a>;
<instr_a>;

inner_loop: <instr_b>
...

outer_loop: <instr_x>
3-12 ADSP-218x DSP Hardware Reference

Program Sequencer
CALL Instruction
The CALL instruction executes in a similar fashion to the JUMP instruction.
The address of the subroutine is embedded in the CALL instruction word
and, once extracted from the instruction register, is fed back the PC for the
next cycle. In addition, the current value of the program counter is incre-
mented and pushed onto the PC stack. Upon return from the subroutine,
the PC stack is popped into the program counter and execution resumes
with the instruction following the CALL.

DO UNTIL Loops
The most common form of a DO UNTIL loop uses the counter register as a
loop iteration counter. When the counter is used to control loop iteration,
counter expired (CE) must be used as the DO UNTIL termination condition.
A simple example of this type of loop is shown in Listing 3-3.

Listing 3-3. DO UNTIL Loop Example

 L0=10; /* setup circular buffer length */
/* register */

 I0=data_buffer; /* load pointer with first address */
/* of circular buffer */

 M0=1; /* setup modify register for pointer */
/* increment */

 CNTR=10; /* load counter with circular buffer */
 /* length */
 DO loop UNTIL CE; /* repeat loop until counter expired */
 DM(I0,M0)=0; /* initialize/clear circular buffer */
 ...any instruction...
loop: ...any instruction...
ADSP-218x DSP Hardware Reference 3-13

Program Control Instructions
When the

CNTR=10;

instruction is executed, prior to entering the loop, the counter is loaded
via the DMD bus. Any previously existing count would be simultaneously
pushed onto the count stack; this push operation is omitted if the counter
is empty. The

DO loop UNTIL CE;

instruction itself only sets up the conditions for looping; no other opera-
tion occurs while the instruction is executed. This occurs only once, at the
beginning of the first time through the loop.

Execution of the DO UNTIL instruction pushes the address of the instruc-
tion immediately following the DO UNTIL onto the PC stack (by pushing
the incremented PC). On the same cycle, the loop stack is pushed with the
address of the end-of-loop instruction and the termination condition.

As execution continues within the loop, the loop comparator checks each
instruction’s address against the address of the loop’s last instruction.
Until that address is reached, normal execution continues.

Each time the end of the loop is reached, the loop comparator determines
that the currently executing instruction is the last in the loop. This affects
the next address select logic of the program sequencer: instead of using the
incremented PC for the next address, the loop termination condition is
evaluated. If the termination condition is false, execution continues with
the first instruction of the loop (the top of the PC stack is taken as the
next address). Note that the PC and loop stacks are not popped, only read.
3-14 ADSP-218x DSP Hardware Reference

Program Sequencer
On the final pass through the loop, the termination condition is true. The
PC stack is popped and execution continues with the instruction immedi-
ately following the last instruction of the loop. The loop stack and count
stack are also popped on this cycle.

! The do-loop hardware tests CE at the end of the loop only. When
CNTR is programmed to zero, the loop is repeated 214 times.

IDLE Instruction
The IDLE instruction causes the processor to wait indefinitely in a low
power state until an interrupt occurs. When an unmasked interrupt
occurs, it is serviced; execution then continues with the instruction fol-
lowing the IDLE instruction.

Slow IDLE Instruction

An enhanced version of the IDLE instruction allows the processor’s inter-
nal clock signal to be slowed, further reducing power consumption. The
reduced clock frequency, a programmable fraction of the normal clock
rate, is specified by a selectable divisor given in the IDLE instruction. The
format of the instruction is

IDLE (n);

where n = 16, 32, 64, or 128. This instruction keeps the processor fully
functional, but operating at the slower clock rate. While it is in this state,
the processor’s other internal clock signals, such as SCLK, CLKOUT, and
timer clock, are reduced by the same ratio. The default form of the
instruction, when no clock divisor is given, is the standard IDLE
instruction.
ADSP-218x DSP Hardware Reference 3-15

Interrupts
When the IDLE (n) instruction is used, it effectively slows down the pro-
cessor’s internal clock and thus its response time to incoming interrupts.
The interrupt response time is increased because the instruction cycle is
extended by the clock divisor n. When an enabled interrupt is received,
the processor will remain in the idle state for up to a maximum of n pro-
cessor cycles before resuming normal operation (n = 16, 32, 64, or 128).

When the IDLE (n) instruction is used in systems that have an externally
generated serial clock (SCLK), the serial clock rate may be faster than the
processor’s reduced internal clock rate. Under these conditions, interrupts
must not be generated at a faster rate than can be serviced, due to the
additional time the processor takes to come out of the idle state (a maxi-
mum of n processor cycles).

Interrupts
The program sequencer’s interrupt controller responds to interrupts by
shifting control to the instruction located at the appropriate interrupt vec-
tor address. Table 3-2 shows the interrupts and associated vector addresses
for the ADSP-218x family processors.

! SPORT1 can be configured as either a serial port or as a collection
of control pins, including two external interrupt inputs, IRQ0 and
IRQ1. See Chapter 5, “Serial Ports” for more information about the
configuration of SPORT1.

Table 3-2. ADSP-218x Interrupts & Interrupt Vector Addresses

Interrupt Source Interrupt Vector Address

RESET startup (or powerup w/PUCR=1) 0x0000 (highest priority)

Powerdown (non-maskable) 0x002C

IRQ2 0x0004
3-16 ADSP-218x DSP Hardware Reference

Program Sequencer
The interrupt vector locations are spaced four program memory locations
apart—this allows short interrupt service routines to be coded in place,
with no jump to the service routine required. For interrupt service rou-
tines with more than four instructions, however, program control must be
transferred to the service routine by means of a jump instruction placed at
the interrupt vector location.

After an interrupt has been serviced, an RTI (Return From Interrupt)
instruction returns control to the main program by popping the top value
on the PC stack into the PC; the status stack is also popped to restore the
previous processor state.

Interrupts can also be forced under software control; see the discussion of
the IFC register below.

IRQL1 (level-sensitive) 0x0008

IRQL0 (level-sensitive) 0x000C

SPORT0 Transmit 0x0010

SPORT0 Receive 0x0014

IRQE (edge-sensitive) 0x0018

Byte DMA Interrupt 0x001C

SPORT1 Transmit or IRQ1 0x0020

SPORT1 Receive or IRQ0 0x0024

Timer 0x0028 (lowest priority)

Table 3-2. ADSP-218x Interrupts & Interrupt Vector Addresses (Cont’d)

Interrupt Source Interrupt Vector Address
ADSP-218x DSP Hardware Reference 3-17

Interrupts
Because of the efficient stack and program sequencer, there is no latency
(beyond synchronization delay) when processing unmasked interrupts,
even when interrupting DO UNTIL loops. Nesting of interrupts allows
higher-priority interrupts to interrupt any lower-priority interrupt service
routines that may currently be executing, also with no additional latency.

The ADSP-218x family processors include a secondary register set which
can be used to provide a fresh set of ALU, MAC, and Shifter registers dur-
ing interrupt servicing. This feature allows single-cycle context switching.
Use of the secondary registers is described in the section, “Mode Status
Register” on page 3-30.

Interrupt Servicing Sequence
When an interrupt request occurs, it is latched while the processor finishes
executing the current instruction. The interrupt request is then compared
with the interrupt mask (IMASK) register by the interrupt controller.

If the interrupt is not masked, the program sequencer pushes the current
value of the program counter (which contains the address of the next
instruction) onto the PC stack—this allows execution to continue with
the next instruction of the main program after the interrupt is serviced.
The program sequencer also pushes the current values of the ASTAT, MSTAT,
and IMASK registers onto the status stack. ASTAT, MSTAT, and IMASK are
stored in this order, with the MSB of ASTAT first, and so on. When IMASK
is pushed, it is automatically reloaded with a new value that determines
whether or not interrupt nesting is allowed (based on the value of the
interrupt nesting enable bit in ICNTL).

The processor then executes a NOP while simultaneously fetching the
instruction located at the interrupt vector address. Upon return from the
interrupt service routine, the PC and status stacks are popped and execu-
tion resumes with the next instruction of the main program.
3-18 ADSP-218x DSP Hardware Reference

Program Sequencer
Configuring Interrupts
The following registers are used to configure interrupts:

• ICNTL—Determines whether interrupts can be nested and config-
ures the external interrupts IRQ2, IRQ1, IRQ0 as edge-sensitive or
level-sensitive

• IMASK—Enables or disables (i.e. masks) each individual interrupt
(both external and internal).

• IFC—Forces an interrupt or clears a pending edge-sensitive inter-
rupt.

The IRQ2, IRQ1, IRQ0 interrupts may be either edge-sensitive or level-sensi-
tive, as selected in the ICNTL register. The ADSP-218x family has three
additional interrupt pins: IRQE, IRQL1, and IRQL2. The IRQE input is
edge-sensitive, while the IRQL1 and IRQL2 inputs are level-sensitive.

For edge-sensitive IRQx interrupts, an interrupt request is latched inter-
nally whenever a falling edge (high-to-low transition) occurs at the input
pin. The latch remains set until the interrupt is serviced; it is then auto-
matically cleared. A pending edge-sensitive interrupt can also be cleared in
software by setting the corresponding clear bit in the IFC register.

Edge-sensitive interrupt inputs generally require less external hardware
than level-sensitive inputs, and allow signals such as sampling-rate clocks
to be used as interrupts.

A level-sensitive interrupt must remain asserted until the interrupt is ser-
viced. The interrupting device must then deassert the interrupt request so
that the interrupt is not serviced again. Level-sensitive inputs, however,
allow many interrupt sources to use the same input by combining them
logically to produce a single interrupt request. Level-sensitive interrupts
are not latched.
ADSP-218x DSP Hardware Reference 3-19

Interrupts
Your program can also determine whether or not interrupts can be nested.
In non-nesting mode, all interrupt requests are automatically masked out
when an interrupt service routine is entered. In nesting mode, the proces-
sor allows higher-priority interrupts to be recognized and serviced.

Interrupt Control Register

The Interrupt Control (ICNTL) register is a 5-bit register that configures
the external interrupt requests (IRQx) of each processor. All bits in ICNTL
are undefined after a processor reset. The bit definitions for each proces-
sor’s ICNTL register are given in Appendix B, “Control/Status Registers”.

ICNTL contains an IRQx sensitivity bit for each external interrupt. The sen-
sitivity bits determine whether a given interrupt input is edge- or
level-sensitive (0 = level-sensitive, 1 = edge-sensitive). There are no sensi-
tivity bits for internally generated interrupts.

The interrupt nesting enable bit (bit 4) in ICNTL determines whether nest-
ing of interrupt service routines is allowed.

When the value of ICNTL is changed, there is a one cycle latency before the
change in interrupt configuration.

Interrupt Mask Register

Each bit of the Interrupt Mask (IMASK) register enables or disables the ser-
vicing of an individual interrupt. Specific bit definitions for each
processor’s IMASK register are given in Appendix B, “Control/Status Regis-
ters.” The mask bits are positive sense: 0=masked, 1=enabled. IMASK is set
to zero upon a processor reset.

On the ADSP-218x family processors, all interrupts are automatically dis-
abled for one instruction cycle following the execution of an instruction
that modifies IMASK. This does not affect serial port autobuffering or
DMA transfers.
3-20 ADSP-218x DSP Hardware Reference

Program Sequencer
If an edge-sensitive interrupt request signal occurs when the interrupt is
masked, the request is latched but not serviced; the interrupt can then be
recognized in software and serviced later.

The contents of IMASK are automatically pushed onto the status stack
when entering an interrupt service routine and popped back when return-
ing from the routine. The configuration of IMASK upon entering the
interrupt service routine is determined by the interrupt nesting enable bit
(bit 4) of ICNTL; it may be altered, though, as part of the interrupt service
routine itself.

When nesting is disabled, all interrupt levels are masked automatically
(IMASK set to zero) when an interrupt service routine is entered.

When nesting is enabled, IMASK is set so that only equal and lower priority
interrupts are masked; higher priority interrupts remain configured as they
were prior to the interrupt. See Table 3-3 for more information.

Table 3-3. IMASK Entering ISRs I

Interrupt level serviced IMASK contents before
(pushed on stack)

IMASK contents entering
interrupt service routine

ICNTL Interrupt Nesting Enable bit = 0 (nesting disabled)

0 (low) ijklmnopqr 0000000000

1 ijklmnopqr 0000000000

2 ijklmnopqr 0000000000

3 ijklmnopqr 0000000000

4 ijklmnopqr 0000000000

5 ijklmnopqr 0000000000

(“ijklmnopqr” represents any pattern of ones and zeroes)
ADSP-218x DSP Hardware Reference 3-21

Interrupts
The interrupt nesting enable bit (in ICNTL) determines the state of IMASK
upon entering the interrupt, as shown in Table 3-3

6 ijklmnopqr 0000000000

7 ijklmnopqr 0000000000

8 ijklmnopqr 0000000000

9 (high) ijklmnopqr 0000000000

ICNTL Interrupt Nesting Enable bit = 1 (nesting enabled)

0 (low) ijklmnopqr ijklmnopq0

1 ijklmnopqr ijklmnop00

2 ijklmnopqr ijklmno000

3 ijklmnopqr ijklmn0000

4 ijklmnopqr ijklm00000

5 ijklmnopqr ijkl000000

6 ijklmnopqr ijk0000000

7 ijklmnopqr ij00000000

8 ijklmnopqr i000000000

9 (high) ijklmnopqr 0000000000

Table 3-3. IMASK Entering ISRs (Cont’d)I

Interrupt level serviced IMASK contents before
(pushed on stack)

IMASK contents entering
interrupt service routine

(“ijklmnopqr” represents any pattern of ones and zeroes)
3-22 ADSP-218x DSP Hardware Reference

Program Sequencer
Global Enable/Disable for Interrupts

Global interrupt enable and disable instructions are available on the
ADSP-218x processors:

ENA INTS;
DIS INTS;

Interrupts are enabled by default after reset. The DIS INTS instruction
causes all interrupts (including powerdown) to be masked out regardless
of the contents of IMASK. The ENA INTS instruction allows all unmasked
interrupts to be serviced again.

Disabling interrupts does not affect serial port autobuffering or DMA
operations.

Interrupt Force and Clear Register

The Interrupt Force and Clear (IFC) register is a write-only register that
allows the forcing and clearing of edge-sensitive interrupts in software. An
interrupt is forced or cleared under program control by setting the force or
clear bit corresponding to the desired interrupt. After the force or clear bit
is set, there is one cycle of latency before the interrupt is actually forced or
cleared.

Edge-sensitive interrupts can be forced by setting the appropriate force bit
in IFC. For most force bit values, programs can load IFC with an immedi-
ate 14-bit value, but for the upper bits (14 and 15) a register-to-register
load must be used. Setting the force bit causes the interrupt to be serviced
once, unless masked. An external interrupt must be edge-sensitive (as
determined by ICNTL) to be forced. The timer, SPORT, and IRQE inter-
rupts also behave like edge-sensitive interrupts and can be masked,
cleared, and forced.
ADSP-218x DSP Hardware Reference 3-23

Interrupts
Pending edge-sensitive interrupts can be cleared by setting the appropriate
clear bit in IFC. Edge-triggered interrupts are cleared automatically when
the corresponding interrupt service routine is called.

Specific bit definitions for the IFC register are given in Appendix B, “Con-
trol/Status Registers”.

! When one of the interrupt pins IRQ0, IRQ1, or IRQ2 is unused and
pulled-high, its interrupt functionality is available to implement
software interrupts. You must then select edge-sensitivity.

Interrupt Latency

For the timer, IRQx, and SPORT interrupts, latency is at least three full
cycles from the time when an interrupt occurs to the time when the first
instruction of the service routine is executed. This latency is shown in
Figure 3-2. Two cycles are required to synchronize the interrupt inter-
nally, assuming that setup and hold times are met (for the IRQx input
pins).

Since interrupts are only serviced on instruction boundaries, before execu-
tion continues, the instruction(s) executed during these two cycles must
be fully completed, including any extra cycles inserted due to Bus
Request/Bus Grant or memory wait states.
3-24 ADSP-218x DSP Hardware Reference

Program Sequencer
The third cycle of latency is needed to fetch the first instruction stored at
the interrupt vector location. During this cycle, the processor executes a
NOP instead of the instruction that would normally have been executed.
On the next cycle, execution continues at the first instruction of the inter-
rupt service routine. The address of the aborted instruction is pushed onto
the PC stack; it will be fetched when the interrupt service routine is
completed.

For a pending interrupt that is masked, the latency from execution of the
instruction that unmasks the interrupt (in IMASK) to the first instruction of
the service routine is one cycle.

CLKOUT

 ADDRESS FOR

INSTRUCTION
FETCH

INTERRU PT

INSTRUCTION

EXECUTING
N–2 N–1 N NO P FIRST INST R OF

SERV RO UTINE

N–1 N N+ 1 INTERRUPT

VECTOR I
I+1

Figure 3-2. Interrupt Latency (Timer, IRQx, and SPORT Interrupts)
ADSP-218x DSP Hardware Reference 3-25

Status Registers and Status Stack
Status Registers and Status Stack
Processor status and mode bits are maintained in internal registers which
can be independently read from and written to over the DMD bus.
Table 3-4 lists and describes these registers.

The interrupt-configuring status registers (ICNTL, IMASK, and IFC) are
described in the previous section, “Configuring Interrupts.” ASTAT, SSTAT,
and MSTAT are discussed in the sections that follow.

The current ASTAT, MSTAT, and IMASK values are pushed onto the status
stack when the processor responds to an interrupt; they are popped upon
return from the interrupt service routine (with the RTI instruction). The
depth of the stack varies from processor to processor. In each case, suffi-
cient stack depth is provided to accommodate nesting of all interrupts.

Table 3-4. Status Registers

Register Description

ASTAT Arithmetic status register

SSTAT Stack status register (read-only)

MSTAT Mode status register

ICNTL Interrupt control register

IMASK Interrupt mask register

IFC Interrupt force/clear register (write-only)
3-26 ADSP-218x DSP Hardware Reference

Program Sequencer
Arithmetic Status Register

The Arithmetic Status register (ASTAT) is eight bits wide and holds the
status information generated by the computational blocks of the proces-
sor. Figure 3-3 shows the default definitions for the individual bits of
ASTAT. The bits that express a particular condition (AZ, AN, AV, AC, MV) are
all positive sense (1=true, 0=false).

Each of the bits is automatically updated when a new status is generated
by an arithmetic instruction. Each bit is affected only by a subset of arith-
metic operations, as shown in Table 3-5.

Arithmetic status is latched into ASTAT at the end of the cycle in which it
was generated and cannot be used until the next cycle.

000000

7

00

ALU RESULT ZERO

ALU CARRY

ALU X INPUT SIGN

ALU RESULT NEGATIVE

ALU OVERFLOW

SS A SMV AQ A C A NAV A Z

ALU QUOTIENT

MAC OVERFLOW

SHIFTER INPUT SIGN

6 1 5 4 3 2 0

Figure 3-3. ASTAT Register
ADSP-218x DSP Hardware Reference 3-27

Status Registers and Status Stack
Loading any ALU, MAC, or Shifter input or output registers directly from
the DMD bus does not affect any of the arithmetic status bits. Executing
the ALU instruction PASS sets the AZ and AN bits for a given X or Y oper-
and and clears AC.

Stack Status Register

The Stack Status (SSTAT) register is eight bits wide and holds information
about the four processor stacks. Figure 3-4 shows the default definitions
for the individual bits of SSTAT. All of the bits are positive sense (1=true,
0=false).

The empty status bits indicate that the number of pop operations for the
stack is greater than or equal to the number of push operations that have
occurred since the last processor reset. The overflow status bits indicate
that the number of push operations for the stack has exceeded the number
of pop operations by an amount that is greater than the total depth of the
stack. When this occurs, the values most recently pushed will be missing
from the stack—older stack values are considered more important than
new.

Table 3-5. Update of ASTAT Status Bits

Status Bit Updated by …

AZ, AN, AV, AC Any ALU operation except DIVS, DIVQ

AS ALU absolute value operation (ABS)

AQ ALU divide operations (DIVS, DIVQ)

MV Any MAC operation except saturate MR (SAT MR)

SS Shifter EXP operation
3-28 ADSP-218x DSP Hardware Reference

Program Sequencer
Since a stack overflow represents a permanent loss of information, the
stack overflow status bits “stick” once they are set, and subsequent pop
operations have no effect on them. In this situation, then, it is possible to
have both the stack empty and stack overflow bits set for a given stack.

Assume, for example, that the four-location count stack is overflowed by
five successive pushes. Five successive pops will restore the stack empty
condition, but will not clear the overflow condition. The processor must
be reset to clear the stack overflow status.

PC STA CK EMP TY

COUNT STAC K OVERFLOW

STATUS STACK EMPTY

PC STACK OVERFLOW

COUNT STACK EM PTY

STATUS STACK OVER FLOW

LOOP STACK EMPTY

LOOP STACK OVERFLOW

101010

7

10

6 1 5 4 3 2 0

Figure 3-4. SSTAT Register (Read-Only)
ADSP-218x DSP Hardware Reference 3-29

Status Registers and Status Stack
Mode Status Register

The Mode Status (MSTAT) register determines the operating mode of the
processor. Figure 3-5 shows the default definitions for the individual bits
of the MSTAT register.

Unlike other status registers, the MSTAT register can also be altered with the
Mode Control instructions, ENA and DIS. The Mode Control instructions
provide a high-level, self-documenting method of configuring the proces-
sors’ operating modes. Although the use of the ENA and DIS assembly
instructions are the preferred method, the MSTAT register can also be mod-
ified by writing a new value to it with a MOVE instruction. Refer to the
description of the Mode Control instructions in the ADSP-218x DSP
Instruction Set Reference for further details.

6 4 2 0

DATA REG ISTER BANK SELECT (SEC_REG)

BIT REVE RSE MODE ENABLE (DAG1) (BIT_REV)

ALU O VERFLOW LATCH MODE ENABLE (AV_LA TCH)

0 = FRACTIONAL, 1 = INTEGER

0 = PRIMARY, 1 = SECONDARY

AR SATURA TION MODE ENABLE (AR_SAT)

MAC RESULT PLA CEMENT (M_MODE)

TIMER ENABLE (TIMER)

GO MODE ENABLE (G_MODE)

0000000

5 3 1

Figure 3-5. MSTAT Register
3-30 ADSP-218x DSP Hardware Reference

Program Sequencer
To enable the bit reverse mode, for example, the following instruction
could be used:

ENA BIT_REV;

The bit-reverse mode, when enabled, bitwise reverses all addresses gener-
ated by data address generator 1 (DAG1). This is useful for reordering the
input or output data of an FFT algorithm.

The ADSP-218x family processors include a secondary register set that
can be used to provide a fresh set of ALU, MAC, and Shifter registers at
any time. For example, it can be used for this purpose during execution of
a subroutine.

The data register bank select bit of MSTAT determines which set of data reg-
isters is active (0=primary, 1=secondary). The secondary register set
duplicates all of the input and result registers of the computation units,
ALU, MAC, and Shifter, as shown in Table 3-6

Table 3-6. Secondary Register Set

AX0 MX0 SI

AX1 MX1 SE

AY0 MY0 SB

AY1 MY1 SR1

AF MF SR0

AR MR0

MR1

MR2
ADSP-218x DSP Hardware Reference 3-31

Status Registers and Status Stack
For example, the following mode control instruction switches from the
processor’s primary register set to its secondary register set:

ENA SEC_REG;

while the following instruction switches back to the primary register set:

DIS SEC_REG;

The ALU overflow latch mode causes the AV status bit to “stick” once it is
set. In this mode, AV will be set by an overflow and will remain set even if
subsequent ALU operations do not generate overflows. AV can then be
cleared only by writing a zero into it.

AR saturation mode, when enabled, causes AR to be saturated to the maxi-
mum positive (0x7FFF) or negative (0x8000) values whenever an ALU
overflow occurs.

The MAC result placement mode determines whether the multiplier oper-
ates in integer or fractional format. This mode is discussed in Chapter 2,
“Computational Units”.

Setting the timer enable bit causes the timer to begin decrementing. Clear-
ing this bit halts the timer.

Enabling Go mode allows the processor to continue executing instructions
from internal program memory during a bus grant. The processor will
halt, waiting for the buses to be released, only when an access of external
memory is required. When Go mode is disabled, the processor always
halts during bus grant. (For more information, see the section, “Bus
Request/Grant” in Chapter 7, “System Interface” .
3-32 ADSP-218x DSP Hardware Reference

Program Sequencer
Conditional Instructions
The condition logic circuit of the program sequencer determines whether
a conditional instruction is executed, for example a jump, call, or arith-
metic operation. It also controls implicit loop sequencing operations based
upon the loop continuation condition on top of the loop stack. The con-
dition logic takes raw status information from ASTAT and the down
counter and derives a set of sixteen composite status conditions.

The status conditions and corresponding assembly language syntax are
listed in Table 3-7. These status conditions are used with the IF condition
clause available on some instructions. In addition, the status of the FI pin
(Flag In) can also be used as a condition for JUMP and CALL instructions.

Table 3-7. IF Condition Logic

Syntax Status Condition True If:

EQ Equal Zero AZ = 1

NE Not Equal Zero AZ = 0

LT Less Than Zero AN .XOR. AV = 1

GE Greater Than or Equal Zero AN .XOR. AV = 0

LE Less Than or Equal Zero (AN .XOR. AV) .OR. AZ = 1

GT Greater Than Zero (AN .XOR. AV) .OR. AZ = 0

AC ALU Carry AC = 1

NOT AC Not ALU Carry AC = 0

AV ALU Overflow AV = 1

NOT AV Not ALU Overflow AV = 0
ADSP-218x DSP Hardware Reference 3-33

TOPPCSTACK Instruction
TOPPCSTACK Instruction
A special version of the Register-to-Register Move instruction, Type 17, is
provided for reading (popping) or writing (pushing) the top value of the
PC stack.

! Whenever you are moving stack entries from or to 16-bit registers,
please keep in mind that the PC stack's word width is 14 bits only.

The normal POP PC instruction does not save the value popped from the
stack, so to save this value into a register you must use the following spe-
cial instruction:

reg = TOPPCSTACK; /* pop PC stack into reg */
/* “toppcstack” may also be lowercase */

MV MAC Overflow MV = 1

NOT MV Not MAC Overflow MV = 0

NEG X Input Sign Negative AS = 1

POS X Input Sign Positive AS = 0

NOT CE Not Counter Expired —

FLAG_IN1 FI pin Last sample of FI pin = 1

NOT FLAG_IN1 Not FI pin Last sample of FI pin = 0

1 Only available on JUMP and CALL instructions.

Table 3-7. IF Condition Logic (Cont’d)

Syntax Status Condition True If:
3-34 ADSP-218x DSP Hardware Reference

Program Sequencer
The PC stack is also popped by this instruction, after a one-cycle delay.
A NOP should usually be placed after the special instruction, to allow the
pop to occur properly:

reg = TOPPCSTACK;
NOP; /* allow pop to occur correctly */

There is no standard PUSH PC stack instruction. Therefore, to push a spe-
cific value onto the PC stack, use the following special instruction:

TOPPCSTACK = reg; /* push reg contents onto PC stack */

The stack is pushed immediately, in the same cycle.

Examples:

AX0 = TOPPCSTACK; /* pop PC stack into AX0 */
NOP; /* allow pop to occur correctly */
TOPPCSTACK = I7; /* push contents of I7 onto PC stack */

Only the registers listed in Table 3-8 may be used in the special
TOPPCSTACK instructions.

Table 3-8. Registers Used in Special TOPPCSTACK Instructions

ALU, MAC, & Shifter
Registers

DAG
Registers

AX0 I0 I4

AX1 I1 I5

MX0 I2 I6

MX1 I3 I7

AY0 M0 M4

AY1 M1 M5

MY0 M2 M6
ADSP-218x DSP Hardware Reference 3-35

TOPPCSTACK Instruction
The Type 17 Register Move instruction is described in the ADSP-218x
DSP Instruction Set Reference.

" TOPPCSTACK may not be used as a register in any other instruction
type!

MY1 M3 M7

AR L0 L4

MR0 L1 L5

MR1 L2 L6

MR L3 L7

SI

SE

SR0

SR1

Table 3-8. Registers Used in Special TOPPCSTACK Instructions (Cont’d)

ALU, MAC, & Shifter
Registers

DAG
Registers
3-36 ADSP-218x DSP Hardware Reference

Program Sequencer
TOPPCSTACK Restrictions
There are several restrictions on the use of the special TOPPCSTACK instruc-
tions, as follows:

• The pop and read TOPPCSTACK instruction may not be placed directly
before an RTI instruction (return from interrupt). A NOP must be
inserted in between:

reg = TOPPCSTACK;
NOP; /* allow pop to occur correctly */
RTI; /* another pop happens automatically */

• The pop and read TOPPCSTACK instruction may not be the last or
next-to-last instruction in a Do Until loop. Neither instruction 1
nor instruction 2 may be the pop/read TOPPCSTACK instruction in the
following code:

DO loop UNTIL CE;

AX0=DM(I5,M5);
...
instruction 2;

loop: instruction 1;

• There must be an equal number of pushes and pops within any Do
Until loop, including any normal POP PC instructions as well as the
special TOPPCSTACK pop/read and push/write instructions.
ADSP-218x DSP Hardware Reference 3-37

TOPPCSTACK Instruction
• Several restrictions exist in relation to the RTS (Return from Subrou-
tine), RTI (Return from Interrupt routine), and POP PC instructions
in the following sequence:

instruction 1;
instruction 2;
instruction 3;

If instruction 3 in this sequence is an RTS, RTI, or POP PC, then the
following restrictions apply:

• Instruction 2 may not be either the pop/read or push/write
TOPPCSTACK instruction.

• If instruction 3 is also the last instruction of a Do Until loop,
then instruction 1 may not be the push/write TOPPCSTACK
instruction.
3-38 ADSP-218x DSP Hardware Reference

4 DATA ADDRESS
GENERATORS

Figure 4-0.

Table 4-0.

Listing 4-0.
Overview
This chapter describes the units that control the movement of data to and
from the processor and from one data bus to another within the processor.
These units include the following:

• Data address generators (DAGs)

• Program Memory Data (PMD) bus and Data Memory Data
(DMD) bus exchange unit

Data Address Generators (DAGs)
Every device in the ADSP-218x family contains two independent data
address generators so that both program and data memories can be
accessed simultaneously. The DAGs provide indirect addressing capabili-
ties. Both perform automatic address modification. For circular buffers,
the DAGs can perform modulo address modification.

The two DAGs differ: DAG1 generates only Data Memory (DM)
addresses, but provides an optional bit-reversal capability; DAG2 can gen-
erate both Data Memory and Program Memory (PM) addresses, but has
no bit-reversal capability.

While the following discussion explains the internal workings of the
DAGs, bear in mind that the ADSP-218x family development software
(assembler and linker) provides a direct method for declaring data buffers
as circular or linear.
ADSP-218x DSP Hardware Reference 4-1

DAG Registers
The software also provides a method for managing the placement of the
buffer in memory. Only the initializing of DAG registers must be explic-
itly programmed (see “Indirect Addressing” on page 4-4 and “Modulo
Addressing (Circular Buffers)” on page 4-5).

DAG Registers
Figure 4-1, shows a block diagram of a single data address generator.
There are three register files: the modify (M) register file, the index (I) reg-
ister file, and the length (L) register file. Each of the register files contains
four 14-bit registers that can be read from and written to via the DMD
bus.

L
REGISTERS

4 X 14

MUX

ADDRESS

DMD BUS

FROM
INSTRUCTION

ADD

I
REGISTERS

4 X 14

M
REGISTERS

4 X 14

MODULUS
LOGIC

BIT
REVERSE

142 14 14 14

14

DAG1 ONLY

FROM

INSTRUCTION

2

Figure 4-1. Data Address Generator Block Diagram
4-2 ADSP-218x DSP Hardware Reference

Data Address Generators
The I (index) registers (I0-I3 in DAG1, I4-I7 in DAG2) contain the
actual addresses used to access memory. When data is accessed in indirect
mode, the address stored in the selected I register becomes the memory
address. With DAG1, the output address can be bit-reversed by setting the
appropriate mode bit in the mode status register (MSTAT) as discussed
below or by using the ENA BIT_REV instruction. Bit-reversal facilitates FFT
addressing.

The data address generators employ a post-modify scheme; after an indi-
rect data access, the specified M (modify) register (M0-M3 in DAG1, M4-M7
in DAG2) is added to the specified I register to generate the updated I
value. The choice of the I and M registers are independent within each
DAG. In other words, any register in the I0-I3 set may be modified by
any register in the M0-M3 set in any combination, but not by those in
DAG2 (M4-M7). The modification values stored in M registers are signed
numbers so that the next address can be either higher or lower.

The address generators support both linear addressing and circular
addressing. The value of the L (length) register corresponding to an I reg-
ister (for example, L0 would correspond to I0) determines which
addressing scheme is used for that I register. For circular buffer address-
ing, the L register is initialized with length of the buffer. For linear
addressing, the modulus logic is disabled by setting the corresponding
L register to zero.

Each time an I register is selected, the corresponding L register provides
the modulus logic with the length information. If the sum of the M register
and the I register crosses the buffer boundary, the modified I register
value is calculated by the modulus logic using the L register value.

All data address generator registers (I, M, and L registers) are loadable and
readable from the lower 14 bits of the DMD bus. Since I and L register
contents are considered to be unsigned, the upper 2 bits of the DMD bus
are padded with zeros when reading them. M register contents are signed;
when reading an M register, the upper 2 bits of the DMD bus are
sign-extended.
ADSP-218x DSP Hardware Reference 4-3

DAG Registers
Indirect Addressing
The ADSP-218x family processors allow two addressing modes for Data
Memory fetches: direct and register indirect. Indirect addressing is accom-
plished by loading an address into an I (index) register and specifying one
of the available M (modify) registers.

The L registers are provided to facilitate wraparound addressing of circular
data buffers. A circular buffer is only implemented when an L register is
set to a non-zero value. For linear (i.e. non-circular) indirect addressing,
the L register corresponding to the I register used must be set to zero.

! Do not assume that the L registers are automatically initialized or
may be ignored; the I, M, and L registers contain random values fol-
lowing processor reset. Your program must initialize the L registers
corresponding to any I registers it uses.

Linear Indirect Addressing

Setting an L register to a non-zero value activates the processor’s circular
addressing modulus logic. For linear indirect addressing, you must set the
appropriate L register to zero to disable the modulus logic.

Listing 4-1 provides an example of simple linear indirect addressing.
Listing 4-2 provides an example of linear indirect addressing that uses a
memory variable to store an address pointer.

Listing 4-1. Simple Linear Indirect Addressing

I3=0x3800;
M2=0;
L3=0;
AX0=DM(I3,M2);
4-4 ADSP-218x DSP Hardware Reference

Data Address Generators
Listing 4-2. Linear Indirect Addressing Using a Memory Variable

.VAR addr_ptr; /* variable holds address to be */
/* accessed */

I3=DM(addr_ptr); /* I3 loaded using direct addressing */
L3=0; /* disable circular addressing */
M1=0; /* no post-modify of I3 */
AX0=DM(I3,M1); /* AX0 loaded using indirect */

/* addressing */

Modulo Addressing (Circular Buffers)
The modulus logic implements automatic modulo addressing for accessing
circular data buffers. To calculate the next address, the modulus logic uses
the following information:

• The current location, found in the I register (unsigned).

• The modify value, found in the M register (signed).

• The buffer length, found in the L register (unsigned).

• The buffer base address.

From these inputs, the next address is calculated according to the formula:

Next Address = (I + M – B) Modulo (L) + B

where:

I=current address
M=modify value (signed)
B=base address
L=buffer length
M + I=modified address
ADSP-218x DSP Hardware Reference 4-5

DAG Registers
The inputs are subject to the condition:

|M| < L

This condition insures that the next address cannot wrap around the
buffer more than once in one operation.

Calculating the Base Address

The base address of a circular buffer of length L is 2n or a multiple of 2n,
where n satisfies the condition:

In other words, the base address is L “rounded” upwards to the closest
power of 2 (or its multiple). This rule implies that a certain number of
low-order bits of the base address must be zeroes.

In practice, you do not need to calculate n yourself; the linker automati-
cally places circular buffers at a proper address.

Circular Buffer Base Address Example 1

For example, let us assume that the buffer length is eight. The length of

the buffer must be less than or equal to some value 2n; n therefore, must
be three or greater. The left side of the inequality rule specifies that the

buffer length must be greater than the value 2n-1; n therefore must be
three or less. The only value of n that satisfies both inequalities is three.

Valid base addresses are multiples of 2n, so in this example valid base
addresses are multiples of eight: 0x0008, 0x0010, 0x0018, and so on.

2n 1– L 2n≤<
4-6 ADSP-218x DSP Hardware Reference

Data Address Generators
Circular Buffer Base Address Example 2

As a second example, assume a buffer length of seven. The inequality again
yields the same value for n, namely, three. With a buffer length of seven,
therefore, the valid base addresses are multiples of eight: 0x0008, 0x0010,
0x0018, and so on.

Circular Buffer Operation Example 1

Suppose that I0 = 5, M0 = 1, L0 = 3, and the base address = 4. The next
address is calculated as:

(I0 + M0 - B) mod L0 + B = (5 + 1 - 4) mod 3 + 4 = 6

The successive address calculations using I0 for indirect addressing pro-
duce the sequence: 5, 6, 4, 5, 6, 4, 5 …. For M0 = –1 (0x3FFF), I0 would
produce the sequence: 5, 4, 6, 5, 4, 6, 5, 4 ….

Circular Buffer Operation Example 2

Assume that I0 = 9, M0 = 3, L0 = 5, and the base address = 8. The
five-word buffer resides at locations 8 through 12 inclusive. The next
address is calculated as:

(I0 + M0 – B) mod L0 + B = (9 + 3 – 8) mod 5 + 8 = 12

The successive address calculations using I0 for indirect addressing pro-
duce the sequence: 9, 12, 10, 8, 11, 9 ... This example highlights the fact
that the address sequence does not have to result in a “direct hit” of the
buffer boundary.
ADSP-218x DSP Hardware Reference 4-7

DAG Registers
Bit-Reverse Addressing
The bit-reverse logic is primarily intended for use in FFT computations
where inputs are supplied or the outputs generated in bit-reversed order.
Bit-reversing is available only on addresses generated by DAG1. The pivot
point for the reversal is the midpoint of the 14-bit address, between bits 6
and 7. This is illustrated in the following chart.

Individual address lines (ADDRN)

Normal Order 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Bit-reversed 00 01 02 03 04 05 06 07 08 09 10 11 12 13

Bit-reversed addressing is a mode, enabled and disabled by setting a mode
bit in the mode status register (MSTAT). When enabled, all addresses gener-
ated using index registers I0-3 are bit-reversed upon output. (The
modified valued stored back after post-update remains in normal order.)
This mode continues until the status bit is reset.

It is possible to bit-reverse address values less than 14 bits wide. You must
determine the first address and also initialize the M register to be used with
a value calculated to modify the I register bit-reversed output to the
desired range. This value is:

2(14 – N)

where N is the number of bits you wish to output reversed. For a complete
example of this, refer to Section 6.6.5.2 “Modified Butterfly” in
Chapter 6, “One-Dimensional FFTs” of the applications handbook Digi-
tal Signal Processing Applications Using the ADSP-2100 Family (Volume 1).
4-8 ADSP-218x DSP Hardware Reference

Data Address Generators
Programming Data Accesses
The ADSP-218x family development software supports the declaration
and use of a simple data structure: one-dimensional arrays (or buffers).
The array may contain a single value (a variable) or multiple values (an
array). In addition, the array may be used as a circular buffer. Here is a
brief discussion of each instance, with an example of how they are declared
and used in assembly language. Complete syntax for all assembler direc-
tives is given in the Assembler Manual for ADSP-218x & ADSP-219x
Family DSPs.

Variables and Arrays
Arrays are the basic data structure of the ADSP-218x. In our literature, the
words “array,” “data buffer,” and “variable” are used interchangeably.
Arrays are declared with assembler directives and can be:

• Referenced indirectly and by name

• Initialized from immediate values in a directive or from external
data files

• Linear or circular with automatic wraparound.

An array is declared and initialized with a directive such as

.VAR coefficients[128] = “filename.dat”;

This directive declares an array of 128 16-bit values located in Data Mem-
ory. The following is an example of the way in which you can reference
the array’s address and length, respectively:

I0=coefficients; /* point to address of buffer */
L0=0; /* set L register to zero */
MX0=DM(I0,M0); /* load MX0 from buffer */
ADSP-218x DSP Hardware Reference 4-9

Programming Data Accesses
These instructions load a value into MX0 from the beginning of the coeffi-
cients buffer in Data Memory. With the automatic post-modify of the
DAGs, you could execute the second of these instructions in a loop and
continuously advance through the buffer.

Alternatively, when you only need to address the first location, you can
directly use the buffer name as a label in many circumstances such as

MX0=DM(coefficients);

The linker substitutes the actual address for the label.

An array or data buffer with a length of one is a simple single-word vari-
able, and is declared in this way:

.VAR coefficient;

Circular Buffers
A common requirement in DSPs is the circular buffer. The circular buffer
is directly implemented by the processors’ DAGs, using the L (length) reg-
isters. First, you must declare the buffer as circular:

.VAR/CIRC coefficients[128];

This identifies it to the linker for placement on the proper address bound-
ary. Next, you must initialize the L register and, in the example below, the
I register and M register:

L0=length (coefficients); /* length of circular buffer */
I0=coefficients; /* point to first address of */

/* buffer */
M0=1; /* increment by 1 location each */

/* time */
4-10 ADSP-218x DSP Hardware Reference

Data Address Generators
Now a statement like

MX0=DM(I0,M0); /* load MX0 from buffer */

placed in a loop, cycles continuously through coefficients and wraps
around automatically.

PMD-DMD Bus Exchange
The PMD-DMD bus exchange unit couples the Program Memory Data
bus and the Data Memory Data bus, allowing them to transfer data
between them in both directions. Since the Program Memory Data bus is
24 bits wide, while the Data Memory Data bus is 16 bits wide, only the
upper 16 bits of PMD can be directly transferred. An internal register (PX)
is loaded with (or supplies) the additional 8 bits. This register can be
directly loaded or read when the full 24 bits are required.

Note that when reading data from Program Memory and Data Memory
simultaneously, there is a dedicated path from the upper 16 bits of the
PMD bus to the Y registers of the computational units. This read-only
path does not use the bus exchange circuit; it is the path shown on the
individual computational unit block diagrams.

PMD-DMD Bus Exchange Structure
Figure 4-2 shows a block diagram of the PMD-DMD bus exchange. There
are two types of connections provided by this circuitry.

The first type of connection is a one-way path from each bus to the other.
This is implemented with two tristate buffers connecting the DMD bus
with the upper 16 bits of the PMD bus. One of these two buffers is nor-
mally used when data is exchanged between the Program Memory and one
of the registers connected to the DMD bus. This is the path used to write
data to Program Memory; it is not shown in the individual computational
unit block diagrams.
ADSP-218x DSP Hardware Reference 4-11

PMD-DMD Bus Exchange
The second connection is through the PX register. The PX register is 8-bits
wide and can be loaded from either the lower 8 bits of the DMD bus or
the lower 8 bits of the PMD bus. Its contents can also be read to the lower
8 bits of either bus.

PM D B US

DM D BU S

16 (UPP ER)

24

16

16

M

U

X

PX

R

E

G

I

S

T

E

R

8

8
8 (LOW ER)

16

8 (LOW ER)

8 (LOW ER) 16 (UPP ER)

Figure 4-2. PMD-DMD Bus Exchange Block Diagram
4-12 ADSP-218x DSP Hardware Reference

Data Address Generators
From the PMD bus, the PX register is:

1. Loaded automatically whenever data (not an instruction) is read
from Program Memory to any register. For example:

AX0 = PM(I4,M4);

In this example, the upper 16 bits of a 24-bit Program Memory
word are loaded into AX0 and the lower 8 bits are automatically
loaded into PX.

2. Read out automatically as the lower 8 bits when data is written to
Program Memory. For example:

PM(I4,M4) = AX0;

In this example, the 16 bits of AX0 are stored into the upper 16 bits
of a 24-bit Program Memory word. The 8 bits of PX are automati-
cally stored to the 8 lower bits of the memory word.

From the DMD bus, the PX register may be:

1. Loaded with a data move instruction, explicitly specifying the PX
register as the destination. The lower 8 bits of the data value are
used and the upper 8 are discarded.

PX = AX0;

2. Read with a data move instruction, explicitly specifying the PX reg-
ister as a source. The upper 8 bits of the value read from the
register are all zeroes.

AX0 = PX;

Whenever any register is written out to Program Memory, the source reg-
ister supplies the upper 16 bits. The contents of the PX register are
automatically added as the lower 8 bits. If these lower 8 bits of data to be
transferred to Program Memory (through the PMD bus) are important,
you should load the PX register from the DMD bus before the Program
Memory write operation.
ADSP-218x DSP Hardware Reference 4-13

Using DAGs with Hardware Overlays
Using DAGs with Hardware Overlays
Special care must be taken by the system programmer when using the
Data address generators to access hardware overlay memory regions. The
DAGs (as well as the program sequencer) work independently of the value
of the PMOVLAY and DMOVLAY registers. Thus, since memory access may not
be from the desired target memory overlay region, data corruption or
undesired program operation could occur. The following are some exam-
ples of instances where special care is required:

• Autobuffering— Since autobuffering works with the current value
of the PMOVLAY and DMOVLAY registers only, precautions must be
made to ensure that memory is not overwritten by the autobuffering
mechanism when performing serial port autobuffering.

• Register Indirect Jumps or Calls—Since DAG register points to the
absolute address location of the active Program Memory Overlay
region, switching context between Program Memory Overlays
before performing a register indirect jump or call may result in
undesired program behavior.

• Circular Buffers—Switching between overlay regions when using
circular buffering will result in data accesses from the same physical
address but from a different overlay region. However, you could use
this behavior for a positive purpose: bouncing data back and forth
between multiple overlay regions via the DAGs and an overlay pag-
ing scheme. (See “Serial Port Autobuffering on the
ADSP-2187/2188/2189 Processors” in Chapter 5 “Serial Ports” for
more information.)
4-14 ADSP-218x DSP Hardware Reference

5 SERIAL PORTS
Figure 5-0.

Table 5-0.

Listing 5-0.
Overview
Synchronous serial ports, or SPORTs, support a variety of serial data com-
munications protocols. They can provide a direct interconnection between
processors in a multiprocessor system.

All ADSP-218x family processors contain two serial ports, SPORT0 and
SPORT1. These serial ports have some similarities and some differences.
This chapter provides a detailed description of the SPORTs and explains
the differences between the two.

Basic Description
Each SPORT has a five-pin interface:

Table 5-1. SPORT External Interface

Pin Name Function

SCLK Serial clock

RFS Receive frame synchronization

TFS Transmit frame synchronization

DR Serial data receive

DT Serial data transmit
ADSP-218x DSP Hardware Reference 5-1

Basic Description
A SPORT receives serial data on its DR input and transmits serial data on
its DT output. It can receive and transmit simultaneously for full duplex
operation. The data bits are synchronous to the serial clock SCLK, which is
an output if the processor generates this clock or an input if the clock is
generated externally. Frame synchronization signals RFS and TFS are used
to indicate the start of a serial data word or stream of serial words.

Figure 5-1, shows a simplified block diagram of a single SPORT.

COM PAND ING

HARDW ARE

RECEIVE S HIFT REGISTER

16

16

TXN

TRANSM IT DAT A

TRANSM IT S HIFT REGISTER

16

DM D BUS
16

DT DR

SERIAL

CONTROL

SCLKTFS RFS

INTERNAL

SERIAL

CLOCK
GENERATO R

RXN

RECEIVE DATA

REGISTER REGISTER

16

Figure 5-1. Serial Port Block Diagram
5-2 ADSP-218x DSP Hardware Reference

Serial Ports
Data to be transmitted is written from an internal processor register to the
SPORT’s TX register via the DMD bus. This data is optionally compressed
in hardware, then automatically transferred to the Transmit Shift register.
The bits in the Shift register are shifted out on the SPORT’s DT pin, MSB
first, synchronous to the serial clock. The receive portion of the SPORT
accepts data from the DR pin, synchronous to the serial clock. When an
entire word is received, the data is optionally expanded, then automati-
cally transferred to the SPORT’s RX register, where it is available to the
processor.

The following is a list of SPORT characteristics. Many of the SPORT
characteristics are configurable to allow flexibility in serial
communication.

• Bidirectional—Each SPORT has independent transmit and receive
sections.

• Double-buffered—Each SPORT section (both receive and transmit)
has a data register for transferring data words to and from other
parts of the processor and a register for shifting data in or out. The
double-buffering provides additional time to service the SPORT.

• Clocking—Each SPORT can use an external serial clock or generate
its own in a wide range of frequencies down to 0 Hz. For more infor-
mation, see “Serial Clocks” on page 5-11.

• Word length—Each SPORT supports serial data word lengths from
three to sixteen bits. For more information, see “Word Length” on
page 5-13.

• Framing—Each SPORT section (receive and transmit) can operate
with or without frame synchronization signals for each data word;
with internally-generated or externally-generated frame signals;
with active high or active low frame signals; with either of two pulse
widths and frame signal timing. For more information, see “Word
Framing Options” on page 5-14.
ADSP-218x DSP Hardware Reference 5-3

Basic Description
• Companding in hardware—Each SPORT can perform A-law and
µ-law companding according to ITU recommendation G.711. For
more information, see “Companding and Data Format” on page
5-28.

• Autobuffering with single-cycle overhead—Using the DAGs, each
SPORT can automatically receive and/or transmit an entire circular
buffer of data with an overhead of only one cycle per data word.
Transfers between the SPORT and the circular buffer are automatic
in this mode and do not require additional programming. For more
information, see “Autobuffering” on page 5-32.

• Interrupts—Each SPORT section (receive and transmit) generates
an interrupt upon completing a data word transfer, or after transfer-
ring an entire buffer if autobuffering is used. For more information,
see “SPORT Timing Considerations” on page 5-44.

• Multichannel capability—SPORT0 can receive and transmit data
selectively from channels of a serial bitstream that is time-division
multiplexed into 24 or 32 channels. This is especially useful for T1
interfaces or as a network communication scheme for multiple pro-
cessors. For more information, see “Multichannel Function” on
page 5-38.

• Alternate configuration—SPORT1 has a multiplexed functionality.
It can function as a serial port or as five separate signals: IRQ0, IRQ1,
FI, FO, and SCLK1. SPORT1 can alternately be configured as two
external interrupt inputs, IRQ0 and IRQ1; an input pin, FI; and an
output pin, FO. In this alternate configuration, the serial clock
(SCLK1) can still be generated internally by the DSP core for use as
a clock source for an external peripheral. For more information, see
“SPORT Enable” on page 5-10.
5-4 ADSP-218x DSP Hardware Reference

Serial Ports
Interrupts
Each SPORT has a receive interrupt and a transmit interrupt. The priority
of these interrupts is shown in Table 5-2.

For complete details about how interrupts are handled, see “Interrupts” in
Chapter 3, “Program Sequencer.”

Operation
Writing to a SPORT’s TX register readies the SPORT for transmission; the
TFS signal initiates the transmission of serial data. Once transmission has
begun, each value written to the TX register is transferred to the internal
transmit shift register and subsequently the bits are sent, MSB first. Each
bit is shifted out on the rising edge of SCLK.

After the first bit (MSB) of a word has been transferred, the SPORT gen-
erates the transmit interrupt. The TX register is now available for the next
data word, even though the transmission of the first word is ongoing.

Table 5-2. SPORT Interrupt Priorities

Priority SPORT Receive and Transmit Interrupts

Highest SPORT0 Transmit

SPORT0 Receive

SPORT1 Transmit

Lowest SPORT1 Receive
ADSP-218x DSP Hardware Reference 5-5

SPORT Programming
In the receiving section, bits accumulate as they are received in an internal
receive register. When a complete word has been received, it is written to
the RX register and the receive interrupt for that SPORT is generated.

! Interrupts are generated differently if autobuffering is enabled. For
more information, see “Autobuffering” on page 5-32.

SPORT Programming
To the programmer, the SPORT can be viewed as two functional sections.
The configuration section is a block of control registers (mapped to Data
Memory) that the program must initialize before using the SPORTs. The
data section is a register file used to transmit and receive values through
the SPORT.

Configuration
Sport configuration is accomplished by setting bit and field values in con-
figuration registers. These registers are memory mapped in Data Memory
space. SPORT0 configuration registers occupy locations 0x3FF3 to
0x3FFA; SPORT1 configuration registers occupy locations 0x3FEF to
0x3FF2. The contents of these registers are summarized in Table 5-3 and
in the register summary in Appendix B, “Control/Status Registers.” The
effects of the various settings are described at length in the sections that
follow.

Table 5-3. SPORT Configuration Registers

Address Contents

0x3FFA SPORT0 multichannel receive word enables (31-16)

0x3FF9 SPORT0 multichannel receive word enables (15-0)

0x3FF8 SPORT0 multichannel transmit word enables (31-16)
5-6 ADSP-218x DSP Hardware Reference

Serial Ports
0x3FF7 SPORT0 multichannel transmit word enables (15-0)

0x3FF6 SPORT0 control register

Multichannel mode controls

Serial clock source

Frame synchronization controls

Companding mode

Serial word length

0x3FF5 SPORT0 serial clock divide modulus (determines frequency)

0x3FF4 SPORT0 receive frame sync divide modulus (determines frequency)

0x3FF3 SPORT0 autobuffer control register

0x3FF2 SPORT1 control register

Flag output value

Serial clock source

Frame synchronization controls

Companding mode

Serial word length

0x3FF1 SPORT1 serial clock divide modulus (determines frequency)

0x3FF0 SPORT1 receive frame sync divide modulus (determines frequency)

0x3FEF SPORT1 autobuffer control register

Table 5-3. SPORT Configuration Registers (Cont’d)

Address Contents
ADSP-218x DSP Hardware Reference 5-7

SPORT Programming
There are two ways to initialize or to change values in SPORT configura-
tion registers: write a register to an immediate address (instruction type 3)
or write immediate data to an indirect address (instruction type 2). With
either method, it is important to configure the serial port before enabling
it.

The first method of programming configuration registers requires no
setup of DAG registers but does require two instructions to perform the
write. For example:

AX0 = 0x6B27; /* the contents of AX0 are written */
DM(0x3FF2) = AX0; /* to the address 0x3FF2 */

AX0 = 0; /* the contents of AX0 are written */
DM(0x3FF3) = AX0; /* to address 0x3FF3 */

In the second method, the DAG (I) index register must contain the Data
Memory address of the configuration register to be written. The modify
(M) register, which updates the I register after the write, must also contain
a valid value. And the length (L) register that has the same number as the I
register must be initialized to zero so that the circular buffer capability is
not active. For example:

AX1 = 0;
I0 = 0x3FF2;
M0 = 1;
L0 = 0;
AX0 = 0x6B27;
DM(I0,M0) = AX0; /* the constant 0x6B27 is written */

from ALU register AX0 to
address pointed to by I0;
pointer then modified by M0 */

DM(I0,M0) = AX1; /* address 0x3FF3 is set to 0 */

Either method works. This method is, however, more prone to error
because the registers are written indirectly. You must make sure that the I
register contains the intended value before the write.
5-8 ADSP-218x DSP Hardware Reference

Serial Ports
Receiving and Transmitting Data
Each SPORT has a receive register and a transmit register. These registers
are not memory mapped, but are identified by assembler mnemonics. The
transmit registers are named TX0 and TX1, for SPORT0 and SPORT1
respectively. Receive registers are named RX0 and RX1 for SPORT0 and
SPORT1 respectively. These registers can be accessed at any time during
program execution using one of the following: a Data Memory access with
immediate address, load of a non-data register with immediate data, or
register-to-register move (instruction types 3, 7, and 17, respectively). For
example, the following instruction would ready SPORT1 to transmit a
serial value, assuming SPORT1 is configured and enabled:

TX1 = AX0; /* the contents of AX0 are transmitted
on SPORT1 */

The following instruction would access a serial value received on
SPORT0:

AY0 = RX0; /* the contents of SPORT0 receive register
is transferred to AY0 */

Because the SPORTs are interrupt driven, these instructions would typi-
cally be executed within a interrupt service routine in response to a
SPORT interrupt.
ADSP-218x DSP Hardware Reference 5-9

SPORT Enable
SPORT Enable
SPORTs are enabled through bits in the System Control register, as
shown in Figure 5-2. This register is mapped to Data Memory address
0x3FFF. Bit 12 enables SPORT0 if it is a 1, and bit 11 enables SPORT1 if
it is a 1. Both of these bits are cleared at reset, disabling both SPORTs.

Bit 10 of the System Control register determines the configuration of
SPORT1, either as a serial port or as interrupts and flags, according to
Table 5-4. If bit 10 is a 1, SPORT1 operates as a serial port; if it is a 0, the
alternate functions are in effect (and bit 11 is ignored). At reset, bit 10 is a
1, so SPORT1 functions as a serial port.

Table 5-4. SPORT1 Alternate Configuration

Pin Name Alternate Name Alternate Function

RFS1 IRQ0 External interrupt 0

TFS1 IRQ1 External interrupt 1

SPORT0 E nable

1 = enabled, 0 = d isabled

SPORT1 E nable

1 = enabled, 0 = d isabled

SPORT1 Con figure

1 = serial port, 0 = FI, FO, IRQ0, IRQ1, SCLK

System Control Register
0X3FFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 5-2. SPORT Enables in the System Control Register
5-10 ADSP-218x DSP Hardware Reference

Serial Ports
Serial Clocks
Each SPORT operates on its own serial clock signal. The serial clock
(SCLK) can be internally generated or received from an external source.

The ISCLK bit, bit 14 in either the SPORT0 or SPORT1 Control register,
determines the SCLK source for the SPORT (see Figure 5-3 on page 5-12).
If this bit is a 1, the processor generates the SCLK signal; if it is a 0, the pro-
cessor expects to receive an external clock signal on SCLK. At reset, ISCLK is
cleared, so both serial ports are in the external clock mode. When ISCLK is
set, internal generation of the SCLK signal begins on the next instruction
cycle, whether or not the corresponding SPORT is enabled. As a result,
you can use unused SPORTs as timers, counters, or clock dividers if you
wish.

The maximum frequency of an externally generated clock can be deduced
from 1/tSCK, as specified in the data sheet for the processor. The frequency
of an internally generated clock is a function of the processor clock fre-
quency (as seen at the CLKOUT pin) and the value of the 16-bit serial clock
divide modulus register SCLKDIV (0x3FF5 for SPORT0 and 0x3FF1 for
SPORT1).

DR1 FI Flag input

DT1 FO Flag output

SCLK1 Same Same

Table 5-4. SPORT1 Alternate Configuration (Cont’d)

Pin Name Alternate Name Alternate Function

SCLK frequency CLKOUT frequency
2 SCLKDIV 1+()×--=
ADSP-218x DSP Hardware Reference 5-11

Serial Clocks
Table 5-5 shows how some common SCLK frequencies correspond to val-
ues of SCLKDIV. (The values assume a CLKOUT frequency of 73.728 MHz.)

If the value of SCLKDIV is changed while the internal serial clock is
enabled, the change in SCLK frequency takes effect at the start of the next
rising edge of SCLK.

Table 5-5. Common Serial Clock Frequencies
(Internally Generated)

SCLKDIV SCLK Frequency

30719 1200 Hz

3839 9600 Hz

575 64 kHz

23 1.536 MHz

17 2.048 MHz

5 6.144 MHz

0 = External (Default)

1 = Internal

ISCLK

SPORT0 Control Register: 0x3FF6
SPORT1 Control Register: 0x3FF2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 5-3. ISCLK Bit in SPORT Control Register
5-12 ADSP-218x DSP Hardware Reference

Serial Ports
Note that the serial clock of SPORT1 (the SCLK pin) still functions when
the port is being used in its alternate configuration (as FO, FI and two
interrupts). In this case, SCLK is unresponsive to an external clock, but can
internally generate a clock signal as described above.

Word Length
Each SPORT independently handles words of 3 to 16 bits. The data is
right-justified in the SPORT data registers if it is fewer than 16 bits long.
The serial word length (SLEN) field in each SPORT Control register deter-
mines the word length according to this formula:

For example, if you are using 8-bit serial words, set SLEN to 7 (0111
binary). The SLEN field is comprised of bits 3-0 in the SPORT Control
register (0x3FF6 for SPORT0 and 0x3FF2 for SPORT1) (see Figure 5-4).

Do not set SLEN to zero or one; these SLEN values are not permitted.

Serial Word Length SLEN 1+=

SPORT0 Control Register: 0x3FF6
SPORT1 Control Register: 0x3FF2

SLEN (Seria l Word Length – 1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 5-4. SLEN Field in SPORT Control Register
ADSP-218x DSP Hardware Reference 5-13

Word Framing Options
Word Framing Options
Framing signals identify the beginning of each serial word transfer. The
SPORTs have many ways of handling framing signals. Transmit and
receive framing are independent of each other. All frame sync signals are
sampled on the falling edge of the serial clock (SCLK).

Frame Synchronization

Word framing signals are optional. If the receive frame sync required
(RFSR) or transmit frame sync required (TFSR) bit in the SPORT Control
register is a 0, a frame sync signal is necessary to initiate communications
but is ignored after the first bit is transferred. Words are then transferred
continuously, unframed. If the RFSR or TFSR bit is a 1, a frame sync signal
is required at the start of every data word.

The RFSR bit is bit 13 in the SPORT Control register (0x3FF6 for
SPORT0 and 0x3FF2 for SPORT1), and the TFSR bit is bit 11. These bits
are both cleared at reset, so that communication in both directions on
both serial ports is unframed (see Figure 5-5).

See “Configuration Example” on page 5-19 for examples of frame sync
timing.

RFSR

TFSR
1 = Transmit Frame Sync Required Every Word

1 = Receive Fram e Sync Required Every Wo rd

0 = Transm it Frame Sync Required 1st W ord

0 = Receive Frame Sync Required 1st Word

SPORT0 Control Register: 0x3FF6
SPORT1 Control Register: 0x3FF2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 5-5. TFSR and RFSR Bits in SPORT Control Register
5-14 ADSP-218x DSP Hardware Reference

Serial Ports
Frame Synchronization Signal Source
The processor can generate frame synchronization signals internally or
receive them from an external source. The sources for transmit frame
syncs and receive frames syncs can be set independently. If the internal
receive frame sync (IRFS) bit or internal transmit frame sync (ITFS) bit in
the SPORT Control register is a 0, the processor expects to receive a signal
on its frame sync pin (RFS or TFS). If the IRFS or ITFS bit is a 1, the pro-
cessor generates its own frame sync signal and drives the RFS or TFS pin as
an output.

The IRFS bit is bit 8 in the SPORT Control register (0x3FF6 for SPORT0
and 0x3FF2 for SPORT1), and the ITFS bit is bit 9. Both of these bits are
cleared at reset, that is, both serial ports require externally generated frame
sync signals for both transmitting and receiving data (see Figure 5-6).

If frame sync signals are generated externally, then RFS and TFS are inputs,
and the external source controls data transmission and reception. The
SPORT will wait for a transmit frame sync before transmitting data and
for a receive frame sync before receiving data. If frame sync signals are
generated internally, however, then RFS and TFS are outputs, and the pro-
cessor controls the timing of data operations.

SPORT0 Control Register: 0x3FF6
SPORT1 Control Register: 0x3FF2

IRFS 0= External RFS (Input)

1= Internal RFS (Output)

ITFS 0= External TFS (Input)

1= Internal TFS (Output)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 5-6. ITFS and IRFS Bits in SPORT Control Register
ADSP-218x DSP Hardware Reference 5-15

Word Framing Options
The SPORT outputs an internally generated transmit framing signal after
data is loaded into the transmit (TX0 or TX1) register, at the time needed to
ensure continuous data transmission, after the last bit of the current word
is transmitted (the exact time depends on the framing mode being used;
see “Normal and Alternate Framing Modes” on page 5-17 in the next sec-
tion). The occurrence of the transmit frame sync is a result of the
availability of data in the transmit register.

With an internally generated receive framing signal, the processor controls
the timing of the receive data. The external data source must provide data
to the serial port synchronized to the receive framing signal (the timing
depends on the framing mode being used; see “Normal and Alternate
Framing Modes” on page 5-17 in the next section). The processor gener-
ates RFS periodically on a multiple of SCLK cycles, based on the value of the
16-bit receive frame sync divide modulus register, RFSDIV (0x3FF4 for
SPORT0 and 0x3FF0 for SPORT1):

For example, to allow 256 SCLK cycles between RFS assertions, set RFSDIV
to 255 (0xFF).

Values of RFSDIV+1 that are less than the word length are not
recommended.

Note that frame sync signals may be generated internally even when SCLK
is supplied externally. This provides a way to divide external clocks for any
purpose.

You can also use one frame sync to generate a single signal for both trans-
mit and receive data. For example, an internally generated RFS (output)
could be connected to an externally generated TFS (input) on the same
SPORT for simultaneous transmit and receive operations. This intercon-
nection is especially useful for combo coder/decoder (codec) interfaces.

Number of SCLK cycles between RFS assertions = RFSDIV +1
5-16 ADSP-218x DSP Hardware Reference

Serial Ports
Normal and Alternate Framing Modes
In the normal framing mode, the framing signal is checked at the falling
edge of SCLK. If the framing signal is asserted, received data is latched on
the next falling edge of SCLK and transmitted data is driven on the next ris-
ing edge of SCLK. The framing signal is not checked again until the word
has been transmitted or received. If data transmission or reception is con-
tinuous, i.e., the last bit of one word is followed without a break by the
first bit of the next word, then the framing signal should occur in the same
SCLK cycle as the last bit of each word.

In the alternate framing mode, the framing signal should be asserted in the
same SCLK cycle as the first bit of a word. Received data bits are latched on
the falling edge of SCLK and transmitted bits are driven on the rising edge
of SCLK, but the framing signal is checked only on the first bit. Internally
generated frame sync signals remain asserted for the length of the serial
word. Externally generated frame sync signals are only checked during the
first bit time.

Framing modes for receiving and transmitting data are independent. If the
receive frame sync width (RFSW) bit or transmit frame sync width (TFSW)
bit in the SPORT Control register is a 0, normal framing is enabled. If the
RFSW or TFSW bit is a 1, alternate framing is used. The RFSW bit is bit 12 in
the SPORT Control register (0x3FF6 for SPORT0 and 0x3FF2 for
SPORT1), and the TFSW bit is bit 10. These bits are both cleared at reset,
so that normal framing in both directions is enabled. (see Figure 5-7).
ADSP-218x DSP Hardware Reference 5-17

Word Framing Options

For an example of normal and alternate framing, see “Configuration
Example” on page 5-19.

Active High or Active Low
Framing sync signals for receiving and transmitting data can be either
active high or active low and are configured independently. If the invert
RFS (INVRFS) bit or invert TFS (INVTFS) bit in the SPORT Control register
is a 0, the corresponding frame sync signal is active high. If the INVRFS or
INVTFS bit is a 1, the frame sync signal is active low. These controls apply
regardless of the source of frame sync signals; they either control the polar-
ity of internally generated signals or determine how externally generated
signals are interpreted.

The INVRFS bit is bit 6 in the SPORT Control register (0x3FF6 for
SPORT0 and 0x3FF2 for SPORT1), and the INVTFS bit is bit 7. These
bits are both cleared at reset, so that frame sync signals are active high.
Figure 5-8 shows the INVTFS and INVRFS bits in the SPORT Control
register.

SPORT0 Control Register: 0x3FF6
SPORT1 Control Register: 0x3FF2

TFSW 0 = Normal Transmit Framing
1 = Alterna te Transmit Framing

RFSW 0 = Normal Receive Framing

1 = Alternate Receive Framing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 5-7. TFSW and RFSW Bits in SPORT Control Register
5-18 ADSP-218x DSP Hardware Reference

Serial Ports
Configuration Example
The example code in Listing 5-1 illustrates how to configure the SPORTs.
This example configures both SPORT0 and SPORT1. SPORT0 is config-
ured for an internally generated serial clock (SCLK), internally generated
frame synchronization, and µ-law companded 8-bit data. This is a typical
setup for communication with a combination codec. SPORT1 is config-
ured for an externally generated serial clock, externally generated frame
synchronization, non-companded 16-bit data and autobuffering. This
setup could be used to transfer data between processors in a multiproces-
sor system.

Only the needed memory mapped registers are initialized. Notice that the
SPORTs are configured before they are enabled and that any extraneous
latched interrupts are cleared before interrupts are enabled.

0 = Active High TFS
1 = Active Low TFS

SPORT0 Control Register: 0x3FF6

SPORT1 Control Register: 0x3FF2

INVRFS 0 = Active High RFS
1 = Active Low RFS

INVTFS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 5-8. INVTFS and INVRFS Bits in SPORT Control Register
ADSP-218x DSP Hardware Reference 5-19

Configuration Example
Listing 5-1. Example SPORT Configuration Code

/* —— SPORT INITIALIZATION CODE —— */

/* SPORT1 inits */
AX0 = 0x0017;
DM(0x3FEF) = AX0; /* enable SPORT1 autobuffering
 TX autobuffer uses I0 and M0
 RX autobuffer uses I1 and M1 */
AX0 = 0x280F;
DM(0x3FF2) = AX0; /* external serial clock, RFS and TFS
 RFS and TFS are required, normal
 framing, no companding and 16 bits */

/* SPORT0 inits */
/* Assumes a CLKOUT of 75.728 MHz.

 Internally generated SCLK will be
 2.048 MHz, and framing sync of 8 kHz. */
AX0 = 255;
DM(0x3FF4) = AX0; /* RFSDIV = 256, 256 SCLKs between
 frame syncs: 8 kHz framing */
AX0 = 17;
DM(0x3FF5) = AX0; /* SCLK = 2.048 MHz */
AX0 = 0x6B27;
DM(0x3FF6) = AX0; /* internal SCLK, RFS and TFS
 normal framing, mu-law companding
 8 bit words */

/* SPORT ENABLE */
IFC = 0x1E; /* clear any extraneous SPORT interrupts */
ICNTL = 0; /* interrupt nesting disabled */
AX0 = 0x1C1F; /* both SPORTs enabled, BWAIT and */
DM(0x3FFF) = AX0; /* PWAIT left as default */
IMASK = 0x1E; /* SPORT interrupts are enabled */

/* —— END SPORT INITIALIZATIONS —— */
5-20 ADSP-218x DSP Hardware Reference

Serial Ports
Timing Examples
This section contains examples of some combinations of the various fram-
ing options. The timing diagrams show relationships between signals, but
are not scaled to show the actual timing parameters of the processor. Con-
sult the appropriate DSP data sheet for actual timing parameters and
values.

The examples assume a word length of four bits, that is, SLEN = 3. Framing
signals are active high, that is, INVRFS = 0 and INVTFS = 0.

The value of the SPORT Control register (0x3FF6 for SPORT0 and
0x3FF2 for SPORT1) is shown for each example. In these binary values,
1= high, 0 = low, and X can be either. The underlined bit values are the
bits that set the modes illustrated in the example.

Figures 5-9 through 5-14 show framing for receiving data. In Figure 5-9
and Figure 5-10, the normal framing mode is shown for noncontinuous
data (any number of SCLK cycles between words) and continuous data (no
SCLK cycles between words). Figure 5-11 and Figure 5-12 show noncon-
tinuous and continuous receiving in the alternate framing mode. In all
four figures, both the input timing requirement for an externally gener-
ated frame sync and the output timing characteristic of an internally
generated frame sync are shown. Note that the output meets the input
timing requirement; thus, on processors with two SPORTs, one SPORT
could provide RFS for the other.
ADSP-218x DSP Hardware Reference 5-21

Timing Examples
B3B3 B2 B1 B0 B2 B1 B0

SCLK

OUTPUT
RFS

DR

RFS
INPUT

SPORT Control Register:

Internal Frame Sync 0X10 XXX 1 X0XX 0011

External Fram e Sync 0X10 XXX 0 X0XX 0011

Both Internal Framing Option and External Framing Option Shown

Figure 5-9. SPORT Receive, Normal Framing

SCLK

OUTPUT
RFS

DR

RFS
INPUT

B3 B2 B1 B0 B3 B2 B1 B0 B3 B2

SPORT Control Register:

Internal Frame Sync 0X10 XXX 1 X0XX 0011

External Frame Sync 0X10 XXX 0 X0XX 0011

Both Internal Framing Option and External Framing Option Shown

Figure 5-10. SPORT Continuous Receive, Normal Framing
5-22 ADSP-218x DSP Hardware Reference

Serial Ports
SCLK

OUTPUT
RFS

DR

RFS
INPUT

B3 B2 B1 B0 B3 B2 B1 B0

SPORT Control Register:

Internal Frame Sync 0X11 XXX 1 X0XX 0011

External Frame S ync 0X11 XXX 0 X0XX 0011

Both Internal Framing Option and External Framing Option Shown

Figure 5-11. SPORT Receive, Alternate Framing

SCLK

OUTPUT
RFS

DR

RFS
INPUT

B3 B2 B1 B0 B3 B2 B1 B0

SPORT Control Register:

Internal Frame Sync 0X 11 XXX 1 X 0XX 0011

External Fram e Sync 0X 11 XXX 0 X0XX 0011

Both Internal Framing Option and External Framing Option Shown

Figure 5-12. SPORT Continuous Receive, Alternate Framing
ADSP-218x DSP Hardware Reference 5-23

Timing Examples
Figure 5-13 and Figure 5-14 show the receive operation with normal
framing and alternate framing, respectively, in the unframed mode. There
is a single the frame sync signal that occurs only at the start of the first
word, either one SCLK before the first bit (normal) or at the same time as
the first bit (alternate). This mode is appropriate for multiword bursts
(continuous reception).

SCLK

RFS

DR
B3 B2 B1 B0 B3 B2 B1 B0 B2B3

SPORT Control Register:

Internal Frame Sync 0X 00 XXX 1 X0XX 0011

External Frame S ync 0X 00 XXX 0 X0XX 0011

Figure 5-13. SPORT Receive, Unframed Mode, Normal Framing

SCLK

RFS

DR
B3 B2 B1 B0 B3 B2 B1 B0 B

2
B3

SPORT Control Register:

Internal Frame Sync 0X01 XXX 1 X0XX 0011

External Frame S ync 0X01 XXX 0 X0XX 0011

Figure 5-14. SPORT Receive, Unframed Mode, Alternate Framing
5-24 ADSP-218x DSP Hardware Reference

Serial Ports
Figures 5-15 through 5-20 show framing for transmitting data and are
very similar to Figures 5-9 to 5-14. In Figure 5-15 and Figure 5-16, the
normal framing mode is shown for noncontinuous data and continuous
data. Figure 5-17 and Figure 5-18 show noncontinuous and continuous
transmission in the alternate framing mode. As with receive timing, the
TFS output meets the TFS input timing requirement.

0XXX 1

B2 B1 B0

SCLK

OUTPUT
TFS

DT

TFS
INPUT

B3 B2 B1 B0B3

SPORT Control Register:

Internal Frame Sync 0XXX 101X 0XXX 0011

External Frame S ync 0 0X 0XXX 0011

Both Internal Framing Option and External Framing Option Shown

Figure 5-15. SPORT Transmit, Normal Framing

B2 B1 B0

SCLK

OUTPUT
TFS

DT

TFS
INPUT

B3 B2 B1 B0B3 B3 B2

SPORT Control Register:

Internal Frame Sync 0XXX 101X 0XXX 0011

External Fram e Sync 0XXX 100X 0XXX 0011

Both Internal Framing Option and External Framing Option Shown

Figure 5-16. SPORT Continuous Transmit, Normal Framing
ADSP-218x DSP Hardware Reference 5-25

Timing Examples
SCLK

TFS

DT
B2 B1 B0B3 B2 B1 B0B3

TFS

OUTPUT

INPUT

SPORT Control Register:

Internal Frame Sync 0XXX 111X 0XXX 0011
External Fram e Sync 0XXX 110X 0XXX 0011

Both Internal Framing Option and External Framing Option Shown

Note: There is an asynchronous delay between TFS input and DT. See the appropriate

data sheet for specifications.

Figure 5-17. SPORT Transmit, Alternate Framing

SCLK

OUTPUT
TFS

DT

TFS
INPUT

B2 B1 B0B3 B0B3 B2 B1

SPORT Control Register:
Internal Frame Syn c 0XXX 111X 0XXX 0011

External Frame S ync 0XXX 110X 0XXX 0011

Both Internal Framing Option and External Framing Option Shown

Note: There is an asynchronous delay between TFS input and DT. See the appropriate

data sheet for specifications.

Figure 5-18. SPORT Continuous Transmit, Alternate Framing
5-26 ADSP-218x DSP Hardware Reference

Serial Ports
Figures 5-19 and 5-20 show the transmit operation with normal framing
and alternate framing, respectively, in the unframed mode. There is a sin-
gle the frame sync signal that occurs only at the start of the first word,
either one SCLK before the first bit (normal) or at the same time as the first
bit (alternate).

SCLK

TFS

DT
B3 B3B0B1B2 B1 B0 B3B2 B2

SPORT Control Register:
Internal Frame Sync 0XXX 001X 0XXX 0011
External Fram e Sync 0XXX 000X 0XXX 0011

Figure 5-19. SPORT Transmit, Unframed Mode, Normal Framing

SCLK

TFS

DT B3 B3B0B1B2 B1 B0 B3B2 B2

SPORT Control Register:
Internal Frame Syn c 0XXX 011X 0XXX 0011

External Frame Sync 0XXX 010X 0XXX 0011

Note: There is an asynchronou s delay between TFS input and DT. See the appropriate

data sheet for specifications.

Figure 5-20. SPORT Transmit, Unframed Mode, Alternate Framing
ADSP-218x DSP Hardware Reference 5-27

Companding and Data Format
Companding and Data Format
Companding (a contraction of COMpressing and exPANDing) is the pro-
cess of logarithmically encoding and decoding data to minimize the
number of bits that must be sent. Both SPORTs share the companding
hardware; one expansion and one compression operation can occur in
each processor cycle. In the event of contention, SPORT0 has priority.

The ADSP-218x family of processors supports both of the widely used
algorithms for companding: A-law and µ-law. The processor compands
data according to the ITU G.711 recommendation. The type of compand-
ing can be selected independently for each SPORT.

If companding is not enabled, there are two formats available for received
data words of fewer than 16 bits: one that fills unused MSBs with zeros,
and another that sign-extends the MSB into the unused bits.

The type of companding, as well as the non-companding data format, are
controlled by the DTYPE field (bits 5-4) in the SPORT Control register
(0x3FF6 for SPORT0 and 0x3FF2 for SPORT1) as shown in Figure 5-21.

SPORT0 Control Register: 0x3FF6

SPORT1 Control Register: 0x3FF2

DTYPE 00=Right justify, zero fill unused MSBs

01=Right justify, sign extend into unused MSBs

10=Compand using µ-law

11=Compand using A-law

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 5-21. DTYPE Field in SPORT Control Register
5-28 ADSP-218x DSP Hardware Reference

Serial Ports
When companding is enabled, valid data in the RX0 or RX1 register is the
right-justified, sign-extended, expanded value of the eight LSBs received.
Likewise, a write to TX0 or TX1 causes the 16-bit value to be compressed to
eight LSBs (sign-extended to the width of the transmit word) before being
written to the internal transmit register. If the magnitude of the 16-bit
value is greater than the 13-bit A-law or 14-bit µ-law maximum, the value
is automatically compressed to the maximum positive or negative value.

Companding Operation Example
With hardware companding, interfacing to a codec requires little addi-
tional programming effort. See the codec hardware interfacing example in
the last section of this chapter.

Here is a typical sequence of operations for transmitting companded data:

• Write data to the TXn register

• The value in TXn is compressed

• The compressed value is written back to TXn

• After the frame sync signal has occurred (if required), TXn is written
to the internal transmit register and the bits are sent, MSB first.

As soon as the SPORT has started to send the second bit of the current
word, TXn can be written with the next word, even though transmission of
the first is not complete. After the MSB has been transferred, the SPORT
generates the transmit interrupt to indicate that TXn is ready for the next
data word. If the framing signal is being provided externally, the next
word must be written to TXn early enough to allow for compression before
the next framing signal arrives.
ADSP-218x DSP Hardware Reference 5-29

Companding and Data Format
Here is a typical sequence of operations for receiving companded data:

• Bits accumulate as received in the internal receive register

• When a complete word is received, it is written to RXn

• The value in RXn is expanded

• The expanded value is written back to RXn

The receive interrupt for that SPORT is then generated.

Contention for Companding Hardware
Since both SPORTs share the companding hardware, only one compres-
sion and one expansion operation can take place during a single machine
cycle. If contention arises, such as when two expansions need to occur in
the same cycle, SPORT0 has priority, while SPORT1 is forced to wait one
cycle.

The effects of contention, however, are usually small. The instruction set
does not support loading both TX0 and TX1 in the same cycle; conse-
quently these operations will be naturally out of phase for contention in
many cases. The overhead cycle for the receive operation occurs prior to
the receive interrupt and does not increase the time needed to service the
interrupt, although it does affect the latency prior to receiving the
interrupt.
5-30 ADSP-218x DSP Hardware Reference

Serial Ports
Companding Internal Data
Because the values in the RX and TX registers are actually companded in
place, it is possible to use the companding hardware internally, without
any transmission or reception at all and without enabling the serial port.
This operation can be used for debugging or data conversion and requires
a single cycle of overhead.

To compress data, enable companding and then:

1. Write data to TXn (compression is calculated).

2. Wait for one cycle (TXn is written with compressed value)

3. Read TXn (it returns the 8-bit compressed data)

The code might look like this:

TX0 = AX0; /* linear data written to transmit register */
NOP; /* any instruction */
AX1 = TX0; /* compressed data transferred to AX1 */

Use the same procedure to expand data, but use RXn instead of TXn.

RX0 = AX0; /* compressed data written to receive
register */

NOP; /* any instruction */
AX1 = RX0; /* expanded - linear value transferred to

AX1 */
ADSP-218x DSP Hardware Reference 5-31

Autobuffering
Autobuffering
In normal operation, a SPORT generates an interrupt when it has received
or has started to transmit a data word. Autobuffering provides a mecha-
nism for receiving or transmitting an entire block of serial data before an
interrupt is generated. Service routines can operate on the entire block of
data, rather than on a single word, reducing overhead significantly. Auto-
buffering is available on both SPORT0 and SPORT1.

Autobuffering uses the circular buffer addressing capability of the DAGs.
With autobuffering enabled, each serial data word is transferred (or if
multichannel operation is enabled, each active word is transferred) to or
from Data Memory in a single overhead cycle. (Autobuffering to Program
Memory is not supported.) This overhead cycle occurs independently of
the instructions being executed and effectively suspends execution for one
cycle (or more, if wait states are required) when it happens. No interrupt
is generated for these individual data word transfers.

The autobuffer transfer cannot be duplicated by any instruction. How-
ever, an equivalent assembly language instruction would be:

DM(I,M) = RX0
or Equivalent Instructions Only

TX0 = DM(I,M)

The I and M registers used in the transfer are selected by fields in the
SPORT’s Autobuffer Control register.

The processor waits for the current instruction to finish before inserting
the overhead cycle. A delay in the autobuffer transfer occurs if the transfer
is required during an instruction executing in multiple cycles (for wait
states, for example). If the transfer is required when the processor is wait-
ing in an IDLE state, the transfer is executed and the processor returns to
IDLE.
5-32 ADSP-218x DSP Hardware Reference

Serial Ports
When a data word transfer causes the circular buffer pointer to wrap
around, the SPORT interrupt is generated. The receive interrupt occurs
after the complete buffer has been received. The transmit interrupt occurs
when the last word is loaded into TXn, prior to transmission.

Aside from the completion of an instruction requiring multiple cycles and
IDMA and BDMA cycles, the automatic transfer of individual data words
has the highest priority of any operation short of RESET, including all
interrupts. (For more information on the priority chain hierarchy of the
ADSP-218x family, please see “Priority Chain” in Chapter 9, “DMA
Ports.”) Thus, it is possible for an autobuffer transfer to increase the
latency of an interrupt response if the interrupt happens to coincide with
the transfer. Up to four autobuffered transfers can occur; in the case that
two or more are needed in the same cycle, they have the following priority,
which is the same as the SPORT interrupt priority:

Highest SPORT0 Transmit
SPORT0 Receive

SPORT1 Transmit
Lowest SPORT1 Receive

In the worst case that all four autobuffer transfers are required at about the
same time, interrupt latency would increase by the time it takes for all the
transfers to occur, which is affected by wait states and bus request.
ADSP-218x DSP Hardware Reference 5-33

Autobuffering
Autobuffer Control Register
In autobuffering mode, an interrupt is generated when the modification of
a specified I register (in the DAG) by the value in the specified M register
(in the DAG) causes a modulus overflow (pointer wraparound). This
means that the end of the buffer has been detected.

The autobuffering mode is enabled separately for receiving and transmit-
ting by bits in the SPORT Autobuffer Control register (0x3FF3 for
SPORT0 or 0x3FEF for SPORT1), shown in Figure 5-22.

The I and M registers used for autobuffering are identified by fields in the
Autobuffer Control register. TIREG and TMREG are binary values that
indicate the numbers of the I and M registers, respectively, associated with
the transmit buffer. The rules governing the pairing of I and M registers are
the same as for other DAG operations: the I and M registers must be in the
same DAG, numbered either 0-3 for DAG1 or 4-7 for DAG2. Conse-
quently, three bits identify the I register, but only two bits are necessary to
indicate the M register because the third bit (MSB) of the M register number
must be the same as for the I register.

TBUF

(Transm it Autobuffering Enable)

RBUF

(Receive Autobuffering Enable)

TIREG TMREG RIREG RMREG

SPORT0 Autobuffer Control Register: 0x3FF3

SPORT1 Autobuffer Control Register: 0x3FEF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 5-22. SPORT Autobuffer Control Register
5-34 ADSP-218x DSP Hardware Reference

Serial Ports
Likewise, RIREG and RMREG indicate the numbers of the I and M regis-
ters, respectively, associated with the receive buffer.

The TBUF and RBUF bits enable transmit autobuffering and receive auto-
buffering, respectively. These bits are cleared to zeros at reset and after a
reboot. Consequently, autobuffering in progress cannot continue through
a reboot operation; you must re-enable autobuffering after a reboot.

Serial Port Autobuffering on the
ADSP-2187/2188/2189 Processors

Due to the additional on-chip hardware memory overlay pages for all ver-
sions of the ADSP-2187, ADSP-2188, and ADSP-2189 processors, special
care must be taken when using autobuffering with these memory overlay
pages. The autobuffering mechanism of the serial ports use the DAG reg-
isters to control the target memory location. Just like normal DAG
operations, autobuffering operations perform accesses to the hardware
overlay currently pointed to by the PMOVLAY/DMOVLAY register.

For example, if you are autobuffering to Data Memory in the address
range of 0x0000 through 0x1fff, then the DMOVLAY register controls the
destination of the data. Changing the value of the overlay register could
result in undesirable behavior, such as, scattering your data across multiple
overlay pages.

However, if you take care in your program to only switch overlays on
“wrap around” of the circular buffer’s Index register, you could have two
or more buffers that you can use in a “ping-pong” fashion. These buffers
reside at identical addresses on separate overlay regions. For more infor-
mation on overlays, see Chapter 8, “Memory Interface.”
ADSP-218x DSP Hardware Reference 5-35

Autobuffering
Autobuffering Example
Listing 5-2 provides an example that sets up SPORT1 for autobuffering
operation. The code assumes that the processor is running with a clockout
frequency of 73.728 MHz. The SPORT will automatically transmit values
from the circular buffer named tx_buffer. It will receive values as they are
sent to the SPORT and automatically transfer the data into the buffer
named rx_buffer. A transmit interrupt will be generated once all of the
tx_buffer values have been transferred to TX1, but before the last value has
been loaded into the transmit shift register. A receive interrupt will be
generated once the rx_buffer has been completely filled.

Listing 5-2. Autobuffering Example Configuration Code

/* Initialization code for autobuffer */

.SECTION/DM data1;

.VAR/CIRC tx_buffer[10];

.VAR/CIRC rx_buffer[10];

.SECTION/PM program;

.global sport1_inits;

/* set up I,M, and L registers */

sport1_inits:
I0 = tx_buffer; /* I0 contains address of

tx_buffer */
M0 = 1; /* fill every location */
L0 = length (tx_buffer);/* L0 set to length of

tx_buffer */
I1 = rx_buffer; /* I1 points to

rx_buffer */
L1 = length (rx_buffer);/* L1 set to length of

rx_buffer */
5-36 ADSP-218x DSP Hardware Reference

Serial Ports
/* set up SPORT1 for autobuffering */

AX0 = 0x0013; /* TX uses I0, M0;
RX uses I1, M0 */

DM(0x3FEF) = AX0; /* autobuffering enabled */

/* set up SPORT1 for 8 kHz sampling and 2.048 MHz SCLK */

AX0 = 255; /* set RFSDIV to 255 for
8 kHz */

DM(0x3FF0) = AX0;
AX0 = 17; /* set SCLKDIV to 17 for

{2.048 MHz SCLK */
DM(0x3FF5) = AX0;

/* set up SPORT1 for normal required framing, internal SCLK
internal generated framing */

AX0 = 0x6B27; /* normal framing,
8 bit mu-law */

DM(0x3FF2) = AX0; /* internal clock,
framing */

/* set up interrupts */

IFC = 6; /* clear any extraneous
SPORT interrupts*/

ICNTL = 0; /* interrupt nesting
disabled */

IMASK = 6; /* enable SPORT1
interrupts */

/* enable SPORT1 */

AX0 = 0x0C1F; /* enable SPORT1 leave */
DM(0x3FFF) = AX0; /* PWAIT, BWAIT as

default */

/* Place first transfer value into TX1 */

AX0 = DM(I0,M0);
TX1 = AX0;
RTS;
ADSP-218x DSP Hardware Reference 5-37

Multichannel Function
Multichannel Function
SPORT0 supports a multichannel function. In the multichannel mode of
operation, serial data is time-division multiplexed. Each subsequent word
belongs to the next consecutive channel so that, for example, a 24-word
block of data contains one word for each of 24 channels. SPORT0 sup-
ports 32 or 24 channels and can automatically select words for particular
channels while ignoring the others.

In single-channel mode, receive and transmit framing identifies the start
of a single word or continuous stream, with independent receive and
transmit operation. In the multichannel mode, the receive frame sync sig-
nal (RFS0) identifies the start of a 24- or 32-word block of serial data with
the receiver and transmitter operating in parallel. TFS0 has an alternate
function, described below.
5-38 ADSP-218x DSP Hardware Reference

Serial Ports
Multichannel Setup
Multichannel operation is enabled by bit 15 in SPORT0’s Control regis-
ter (0x3FF6). When this bit is a 1, multichannel mode is enabled, and
some control bits in the SPORT0 Control register are redefined. Bits
affected by multichannel mode are shown in Figure 5-23. At reset, bit 15
is cleared, disabling multichannel mode and enabling normal operation.

The state of the multichannel length bit MCL, bit 9, determines whether
there are 24 or 32 channels, i.e. whether the block length is 24 or 32
words. A 0 selects 24-word blocks; a 1, 32-word blocks. In multichannel
mode, the word length is still set by the SLEN field in the SPORT Control
register and can be 3 to 16 bits.

SPORT0 C ontrol R egister (M ulticha nnel Version)

0x3FF6

M CE

(M ultichanne l Enable)

1 = M ultich annel O pera tion

M CL (M ultichann el Length)

0 = 24 W o rds

1 = 32 W o rds

M FD

(M ultichannel

Fram e Delay)

INVTDV (Invert Transm it D ata Va lid)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

Figure 5-23. SPORT0 Control Register with Multichannel Mode Enabled
ADSP-218x DSP Hardware Reference 5-39

Multichannel Function
The multichannel frame delay (MFD) is a 4-bit field specifying (in binary)
the number of serial clock cycles between the frame sync signal and the
first data bit. This allows the processor to work with different types of T1
interface devices. Figure 5-24 shows a variety of delays.

SCLK

FIRST
BIT

RFS M FD=9

RFS M FD=8

RFS M FD=7

RFS M FD=6

RFS M FD=5

RFS M FD=1

RFS M FD=0

9 8 7 6 5 4 3 2 1

Figure 5-24. SPORT Multichannel Frame Delay Examples
5-40 ADSP-218x DSP Hardware Reference

Serial Ports
The memory-mapped receive enable register and transmit enable register
are each 32 bits wide and made up of two contiguous sixteen-bit registers,
as shown in Figure 5-25. Each bit corresponds to a channel; setting the bit
enables that channel so that the processor will select its word from the 24-
or 32-word block. For example, setting bit 0 selects word 0, bit 12 selects
word 12, and so on.

Multichannel Operation
Received words for channels that are not enabled are ignored; that is, no
interrupts are generated for these words, no autobuffering occurs and no
data is written to the RX0 register. Likewise, there are no interrupts and no
autobuffering for transmit words that are not enabled. During transmit
word time slots for channels that are not enabled, the data transmit (DT)
pin is tristated.

1 = Channel Enabled

0 = Channel Ignored

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Receive

Word

Enables

Transmit

Word

Enables

0x3FFA

0x3FF9

0x3FF8

0x3FF7

Figure 5-25. SPORT0 Multichannel Word Enable Registers
ADSP-218x DSP Hardware Reference 5-41

Multichannel Function
Most aspects of SPORT0 operate normally in the multichannel mode.
Specifically, word length (SLEN), internal or external framing (IRFS), frame
signal inversion (INVRFS), companding (DTYPE) and autobuffering are
unchanged in the multichannel mode.

! It is important that RFS does not occur more than once per frame in
multichannel mode.

Instead of providing frame synchronization, the TFS0 signal functions as a
transmit data valid (TDV) signal in multichannel mode. TDV is asserted
while the transmitter is active. TDV can be active high or low, and its polar-
ity is controlled by the INVTFS bit, renamed INVTDV in this context. If
INVTDV is a 1, TDV is active low; otherwise it is active high. TDV can be used
to enable additional buffer logic, if required.

Figure 5-26 shows the start of a multichannel transfer. As in earlier exam-
ples, word length is four bits (SLEN=3) and frame sync signals are active
high. Multichannel frame delay (MFD) is one SCLK cycle. For the purpose of
illustration, words 0 and 2 are selected for receiving and words 1 and 2 are
selected for transmission.

SCLK

B3 B2 B1 B2
DR

RFS

B0 IGNORED B3

DT
B2B3 B0 B3 B2B1

TDV

WORD 0 WORD 1 WORD 2

Figure 5-26. Start of Multichannel Transfer
5-42 ADSP-218x DSP Hardware Reference

Serial Ports
Figure 5-27 shows a complete 24-word block in the multichannel mode,
with complete words represented in the waveforms instead of individual
bits. Receiving is active for all words and transmitting is active for words
0–3, 8–11 and 16–19 only.

Figure 5-27. Complete Multichannel Example
ADSP-218x DSP Hardware Reference 5-43

SPORT Timing Considerations
SPORT Timing Considerations
The SPORTs support full duplex operation and are normally interrupt
driven. That is, whenever a SPORT transaction has completed, the pro-
cessor generates an internal interrupt. Under most operating conditions,
the actual timing of the SPORT interrupts is not critical. In some sophis-
ticated DSP systems, however, it is important to know the timing of the
interrupt relative to the operation of the serial port.

Companding Delay
Use of the companding circuit introduces latency in two ways. First, com-
pressing or expanding a data value takes a single processor cycle. Second,
SPORT0 has priority over SPORT1 if both require an expansion or com-
pression operation in the same cycle; in this case, SPORT1 must wait one
processor cycle. See the section on companding earlier in this chapter for
more details on companding.

Clock Synchronization Delay
Some SPORT timings depend on the processor clock. Other timings
depend on the serial clock (SCLK0 or SCLK1). These clocks are asynchro-
nous. There is a delay associated with synchronizing the serial clock to the
processor clock whether the serial clock is internally or externally gener-
ated. This delay is different for the transmit and receive interrupts, as
explained in the following sections:“Transmit Interrupt Timing” on
page 5-47 and “Receive Interrupt Timing” on page 5-48.
5-44 ADSP-218x DSP Hardware Reference

Serial Ports
Startup Timing

When a serial port is enabled by a write to the System Control register, it
takes two SCLK cycles before it is actually enabled. On the next (third)
SCLK cycle, the serial port becomes active, looking for a frame sync.

When the a serial port is disabled, if you set up the configuration to gener-
ate an internal SCLK, the pin becomes active before the port is enabled.

Internally Generated Frame Sync Timing
When internally generated frame syncs are used, all that is necessary to
transmit data, from the programmer’s point of view, is to move the data
into the appropriate TX register with an instruction such as:

TX0 = AX0;

Once data is written into the TX register, the processor generates a frame
sync after a synchronization delay. This delay in turn affects the timing of
the serial port transmit interrupt. The latency depends on five factors:

• Frequency of the serial clock

• Whether or not companding is enabled

• Whether or not there is contention for the companding circuit

• Whether the current word has finished transmitting

• Logic level of the SCLK when the data value was loaded into the
transmit register

! If the transmit frame sync is generated externally, data starts trans-
mitting when a frame sync signal is received.
ADSP-218x DSP Hardware Reference 5-45

SPORT Timing Considerations
After the TX register is loaded, it takes three complete phases of the serial
clock, HIGH, LOW and HIGH, in that order, to ensure synchronization
(see Figure 5-28).

Serial C lock

TX Written

Processor Clock

High Low High

MSB Transm itted
(Alternate Framing)

Serial C lock

Processor Clock

High High

TX Written, SCLK High

TX Written, SCLK Low

TX Written

TFS OUTPUT
(Normal Fram ing)

TFS OUTPUT
(Alternate Framing)

TFS OUTPUT
(Normal Fram ing)

TFS OUTPUT
(Alternate Framing)

MSB Transm itted
(Normal Fram ing)

MSB Transm itted
(Alternate Framing)

MSB Transm itted
(Normal Fram ing)

Low

Figure 5-28. Serial Clock Synchronization
5-46 ADSP-218x DSP Hardware Reference

Serial Ports
Once synchronization has been ensured and a frame sync generated, the
most significant bit of the transmit word is shifted out as follows: on the
same rising edge as the frame sync if alternate framing is used and on the
rising edge of the next serial clock if normal framing is used. Therefore,
the worst-case synchronization delay is two SCLK cycles.

There is additional delay if the previous data transmission has not com-
pleted; the TX register cannot be loaded into the transmit shift register
until the previous transmission is complete.

Transmit Interrupt Timing
Once the MSB has been transmitted, the subsequent bits are transmitted
on the rising edges of the SCLK. The transmit interrupt (or autobuffer
request) is generated internally on the falling edge of SCLK during the
transmission of the second bit (see Figure 5-29). This timing gives the
program time to load the TX register with the next data for continuous
data transmission.

The transmit interrupt, like any other interrupt, must be synchronized to
the processor clock. Servicing is subject to the same latencies as other
interrupts. The transmit interrupt essentially means that it is all right to
write a value to the TX register.

Interrupt or Autobuffer Request

TFS

DT

SCLK

BIT3 BIT2 BIT1 BIT0

Figure 5-29. SPORT Interrupt or Autobuffer Timing, Transmit 4-Bit
Words (No Companding)
ADSP-218x DSP Hardware Reference 5-47

SPORT Timing Considerations
Receive Interrupt Timing
The receiver portion of the SPORT latches data on the DR pin on the fall-
ing edges of SCLK.

Receive interrupt timing differs from transmit interrupt timing. The
receive interrupt or autobuffer request occurs only after an entire word is
received. The interrupt request occurs on the rising edge of SCLK after a
word is received (see Figure 5-30) and indicates that new data in the RX
register can be read.

Companding causes a delay in the same manner as for transmitting. How-
ever, the latency is transparent, as the receive interrupt is generated after
the expansion has taken place (see Figure 5-31).

Interrupt or Au tobuffer Request

RFS

DR

SCLK

BIT3 BIT2 BIT1 BIT0

Figure 5-30. SPORT Interrupt or Autobuffer Timing, Receive 4-Bit
Words (No Companding)

Interrupt or Autobuffer Request

RFS

DR

SCLK

BIT3 BIT2 BIT1 BIT0

Figure 5-31. SPORT Interrupt or Autobuffer Timing, Receive 4-Bit Words
(Companding Enabled)
5-48 ADSP-218x DSP Hardware Reference

Serial Ports
The LSB is received on the falling edge of SCLK. One processor cycle
elapses to allow synchronization to the processor clock. One processor
cycle later, the SPORT attempts to expand the data if companding is
enabled and the other serial port is not using the companding circuitry.
Companding latencies as discussed above occur prior to generation of a
receive interrupt. Servicing the receive interrupt is subject to the same
latencies as other interrupts.

Interrupt and Autobuffer Synchronization
The serial ports are treated as an asynchronous system to the processor,
even if the processor is providing the serial clock. Internal to the processor
is a circuit which synchronizes the autobuffer or interrupt requests to the
processor clock. Figure 5-32 shows the synchronization delay for the serial
ports, assuming the setup and hold times are met for the current processor
cycle. The setup and hold times for the serial port requests are the same as
shown on the data sheet for the IRQ2 signal. If the setup and hold times are
not met, there is an additional processor cycle of delay added.

As shown in Figure 5-32, there is a two-processor-cycle delay before the
autobuffer or interrupt request is acted on by the processor. The same
latencies exist for all external interrupts. The processor can only service
interrupt or autobuffer requests on instruction cycle boundaries, so there
may be additional latency cycles added due to the completion of an
instruction.

Processor can
service the
request here

CLKOUT

Request

Setup Time

Hold Time

Figure 5-32. Synchronization of Autobuffer or Interrupt Request to Pro-
cessor Clock
ADSP-218x DSP Hardware Reference 5-49

SPORT Timing Considerations
Instruction Completion Latencies
There are several situations which can cause an instruction to take more
than one processor cycle. Any of the following can delay the processor’s
ability to service a pending interrupt or autobuffer request:

• External memory wait states

• Bus request when an external access is required (in Go mode)

• Bus request with Go mode disabled

• Multiple external accesses required for a single instruction

• A pending higher priority autobuffer or interrupt request

• Interrupt being masked

On instruction cycle boundaries the processor will service multiple pend-
ing interrupt or autobuffer requests in the following priority order:

• SPORT0 transmit autobuffer—highest priority

• SPORT0 receive autobuffer

• SPORT1 transmit autobuffer

• SPORT1 receive autobuffer

• Unmasked pending interrupts in priority order
5-50 ADSP-218x DSP Hardware Reference

Serial Ports
Interrupt and Autobuffer Service Example
Figure 5-33 shows the execution of a serial port interrupt based on a
request that meets the setup and hold time requirements. This example is
the same for a receive or a transmit interrupt request.

An additional latency cycle is consumed due to the fetching of the first
instruction of the interrupt routine. The interrupt can only be serviced on
an instruction cycle boundary. The above example (in Figure 5-33)
assumes all instructions are completed in one processor cycle. Figure 5-34
shows the result of an autobuffer request that meets the setup and hold
requirements.

Request

CLKOUT

EXEC A B FETCH INT INT

Sync Delay

NOP Instruction, Fetch Vector

Execute first instruction of interrupt routine

Figure 5-33. Interrupt Service Example

Request

CLKOUT

EXEC A B AUTOBUFFER C

Sync Delay

Do the autobuffer transfer

Continue main program

Figure 5-34. Autobuffer Service Example
ADSP-218x DSP Hardware Reference 5-51

SPORT Timing Considerations
Autobuffering only consumes the cycles necessary to perform the data
transfer; no additional cycles are lost fetching instructions. The above dia-
gram assumes that all instructions and data transfers occur in one
processor cycle.

Receive Companding Latency
In addition to the cycles used for synchronization, there are some addi-
tional delays possible due to receive companding. The synchronized
request is used by the processor to decide when to write the receive register
with the expanded value. This can only occur on instruction cycle bound-
aries and only one receive register can be expanded at a time. On the
ADSP-218x family processors, there is also a possibility of a delay due to
the availability of the companding circuitry. SPORT0 has the higher pri-
ority. When companding is enabled, the autobuffer or interrupt request
does not occur until the register has been expanded. Figure 5-35 and
Figure 5-36 show examples of autobuffering with companding and the
latencies involved. Figure 5-36 shows the latency when there are two
pending receive autobuffer requests with companding enabled.

Request

CLKOUT

EXEC A B C AUTOBUFFER

Sync Delay

Expand the receive register

Do the autobuffer transfer

D

COMPAND EXPAND RX

Continue main program

Figure 5-35. Receive Companding Example
5-52 ADSP-218x DSP Hardware Reference

Serial Ports
Interrupts with Autobuffering Enabled
When autobuffering is enabled, SPORT interrupts occur when the
address modification done during the autobuffer operation causes a mod-
ulus wraparound. The synchronization delay applies to this type of
interrupt as well. An example is shown in Figure 5-37.

CLKOUT

EXEC

Sync Delay

Expand RX0

COMPAND

Continue main program

Request SPORT1 Receive

Request SPORT0 Receive

EXPAND RX0 EXPAND RX1

A B C AUTOBUFFE R DAUTOBUFFER

Expand RX1

RX0 Autobuffer Transfer

RX1 Autobuffer Transfer

Figure 5-36. Receive Companding Example with Both Serial Ports

CLKOUT

EXEC INTFETCH INTEAUTOBUFFER

Sync Delay

NOP Instruction, Fetch Vector

Execute first instruction of interrupt routine

D

Figure 5-37. Autobuffering Interrupt Example
ADSP-218x DSP Hardware Reference 5-53

SPORT Timing Considerations
Unusual Complications
In most cases the serial port companding, autobuffer, and interrupt laten-
cies are transparent to your application program. When trying to use the
same I register for more than one autobuffer channel, it becomes impor-
tant to make sure that the latencies do not affect the correct order of
operations. For example, if the serial port data is continuous, and the
receiver and transmitter are working with the same frame signal, the order
of the transmit and receive autobuffer or interrupt operations may be
affected by the latencies, as shown in Figure 5-38.

If the processor is free to handle the autobuffer requests in the order they
are generated, the receive autobuffer happens first and is then followed by
the transmit autobuffer. The order of these operations may change if the
processor is not available to handle the requests due to any of the previ-
ously mentioned latencies.

In the example shown in Figure 5-35, there are 1½ serial clock cycles
between the requests. If the processor is subject to bus requests, wait
states, or other latencies that are longer than 1½ serial clock cycles, both
autobuffer operations may be held off. Since the transmit autobuffer has a
higher priority, its request will occur first.

Transmit autobuffer request

SCLK

BIT3 BIT2 BIT1 BIT0 BIT3 BIT2 BIT1 BIT0

BIT3 BIT2 BIT1 BIT0 BIT3 BIT2 BIT1 BIT0

DR

DT

Receive autobuffer request

Figure 5-38. Using One Index Register for Transmit and Receive
Autobuffer
5-54 ADSP-218x DSP Hardware Reference

Serial Ports
Because of the priority of the autobuffer requests, the use of a single I reg-
ister is more difficult or even impossible in some cases. As long as there are
no possible latency cases longer than the difference in the timing of the
requests, it is quite possible to use a single I register for serial port
autobuffering.

Serial Port Startup Issues
Serial clocks have some special startup issues that you need to be aware of
and take precautions for. This section discusses these issues.

Gated Serial Clocks
The ADSP-218x family processors require two serial clock cycles to syn-
chronize the enabling of the serial port to the serial clock signal.
Therefore, Analog Devices recommends using a continuous serial clock
for frame sync signals that are active for more than a single serial clock
cycle. However, if a gated serial clock is used in your system with a frame
sync signal that is longer than one serial clock cycle, you must use the fol-
lowing procedure each time the serial port is enabled.

1. Set the SLEN in the SPORT Control register to be equal to (normal
word length-2).

For example, if 12-bit words are being transmitted/received, set the
SLEN field in the SPORTx Control register to 9 in the main part of
the program that sets up the SPORT.

2. Enable the SPORT.

3. Ignore the first word transmitted/received.

4. When the interrupt service routine is serviced for the first time,
change the value in the SLEN field back to 11 as you go. This
change will cause the SPORT to re-synchronize and trans-
mit/receive the correct words.
ADSP-218x DSP Hardware Reference 5-55

Serial Port Startup Issues
Figure 5-39 shows a detailed flow chart for the gated serial clock proce-
dure described above.

Set SLEN field
in SPORTx_Ctrl_Reg

to (normal_word_length-2)
in main program along with

rest of setup

Sit in IDLE loop
waiting for

SPORTx interrupt
to occur

Get
Interrupt?

NO YES

Enable SPORT

Jump to
ISR

NO

YES

Is this the
first word

transmitted
/received?

Proceed with
normal

transmit/receive

Change the SLEN to
(norm al_word_length-1)
and ignore the first word

received

Figure 5-39. Gated Serial Clock Procedure
5-56 ADSP-218x DSP Hardware Reference

Serial Ports
Ringing and Overshoot on Serial Clock Pins
Serial ports are high-performance, sensitive signals. (They need to be sen-
sitive in order to perform at high speeds.) This sensitivity makes them
subject to noise, which can be caused by reflections (ringing) in the signal.
In order to prevent reflections, use short traces and a series termination
resistor at the beginning or end of the transmission line.

! To determine if reflection appears in a signal, you need to use a
high-bandwidth scope with a 1 GHz or greater sampling frequency.

Serial ports are also subject to overshoot. For example, exceeding the max-
imum voltage input specification for the serial port may cause it to lock up
or hang.

Multi-Cycle Frame Sync Pulse
When operating with frame signals that are held asserted for more than
one cycle, it is possible to have a start-up problem with continuous data.
The problem occurs when a frame signal is asserted for multiple serial
clock cycles prior to enabling the serial port. Figure 5-40 shows an exam-
ple of this situation. This very unusual situation causes the receiving
device to clock in bad bits before the SPORT is actually enabled.

SCLK

TFS

DT

SPORT Enable
Command

1 2 3

MSB

INPUT

INPUT

OUTPUT

SPORT Ready
and Active Frame Detected

Figure 5-40. SPORT Enabled While Receiving an Active Frame Sync
ADSP-218x DSP Hardware Reference 5-57

Serial Port Startup Issues
At position ② in Figure 5-40 the SPORT is being enabled. The SPORT
takes the normal two SCLK cycle delay to become active, and at position ③ ,
it begins looking for the TFS signal. In this case, however, the TFS signal is
already active and the receiving device already started receiving bits. This
situation causes the receiving device to clock in some number of incorrect
bits. There are three different cases to be concerned with:

• Non-continuous data—only the first received word is affected; the
next word syncs properly

• Frame in multi-channel mode—the entire first frame is incorrect

• Continuous data—the entire data stream is misaligned

If this situation is likely to be a problem, the external circuit shown in
Figure 5-41 can be used to disable the received frame sync until the
SPORT is truly active. Disabling the received frame sync permits software
to check the status of the frame sync and wait for it to become inactive
before enabling the input.

SCLK

TFS

RFS

DR

DT

FLIN

FLOUT

S
P

O
R

T TFS

SCLK

RFS

DR

DT

Figure 5-41. External SPORT Enable Circuit
5-58 ADSP-218x DSP Hardware Reference

6 TIMER
Figure 6-0.

Table 6-0.

Listing 6-0.
Overview
The programmable interval timer can generate periodic interrupts based
on multiples of the processor’s cycle time. When enabled, a 16-bit count
register is decremented every n cycles, where n-1 is a scaling value stored
in an 8-bit register. When the value of the count register reaches zero, an
interrupt is generated and the count register is reloaded from a 16-bit
period register.

The scaling feature of the timer allows the 16-bit counter to generate peri-
odic interrupts over a wide range of periods. Given a processor cycle time
of 80 ns, the timer can generate interrupts with periods of 80 ns up to
5.24 ms with a zero scale value. When scaling is used, time periods can
range up to 1.34 seconds.

Timer interrupts can be masked, cleared and forced in software if desired.
For additional information, refer to the section “Interrupts” in Chapter 3,
“Program Control.”
ADSP-218x DSP Hardware Reference 6-1

Timer Architecture
Timer Architecture
The timer includes two 16-bit registers, TCOUNT and TPERIOD and one 8-bit
register, TSCALE. The extended Mode Control instruction enables and dis-
ables the timer by setting and clearing bit 5 in the Mode Status register,
MSTAT. For a description of the Mode Control instructions, refer to the
ADSP-218x DSP Instruction Set Reference. The timer registers, which are
memory-mapped, are shown in Figure 6-1.

TCOUNT is the count register. When the timer is enabled, it is decremented
as often as once every instruction cycle. When the counter reaches zero, an
interrupt is generated. TCOUNT is then reloaded from the TPERIOD register
and the count begins again.

0x3FFD

0x3FFC

0x3FFB

TPERIOD Period Register

TCOUNT Counter Register

TSCALE Scaling Register00000000

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

Figure 6-1. Timer Registers
6-2 ADSP-218x DSP Hardware Reference

Timer
TSCALE stores a scaling value that is one less than the number of cycles
between decrements of TCOUNT. For example, if the value in TSCALE register
is 0, the counter register decrements once every cycle. If the value in
TSCALE is 1, the counter decrements once every 2 cycles. Figure 6-2 shows
the timer block diagram.

TSCALE TPERIOD

CLKOUT
Timer Enable and

TCOUNTDecrement Zero

Count Register Load Logic

Timer
Interrupt

Timer Enable

16

16

168

DMD Bus

Prescale Logic

Figure 6-2. Timer Block Diagram
ADSP-218x DSP Hardware Reference 6-3

Resolution
Resolution
TSCALE provides the capability to program longer time intervals between
interrupts, extending the range of the 16-bit TCOUNT register. Table 6-1
shows the range and the relationship between period length and resolution
for TPERIOD = maximum.

Timer Operation
Table 6-2 shows the effect of operating the timer with TPERIOD = 5,
TSCALE = 1 and TCOUNT = 5. After the timer is enabled (cycle n–1) the
counter begins. Because TSCALE is 1, TCOUNT is decremented on every other
cycle. The reloading of TCOUNT and continuation of the counting occurs, as
shown, during the interrupt service routine.

Table 6-1. Timer Range and Resolution

Cycle Time = 30 ns

TSCALE Interrupt Every… Resolution

0 1.97 ms 30 ns

255 .5 s 7.65 µs

Table 6-2. Example Of Timer Operation

Cycle TCOUNT Action

n–4 TPERIOD loaded with 5

n–3 TSCALE loaded with 1

n–2 TCOUNT loaded with 5
6-4 ADSP-218x DSP Hardware Reference

Timer
n–1 5 ENA TIMER executed

n 5 Since TSCALE = 1, no decrement

n+1 5 Decrement TCOUNT

n+2 4 No decrement

n+3 4 Decrement TCOUNT

n+4 3 No decrement

n+5 3 Decrement TCOUNT

n+6 2 No decrement

n+7 2 Decrement TCOUNT

n+8 1 No decrement

n+9 1 Decrement TCOUNT

n+10 0 No decrement

n+11 0 Zero reached, interrupt occurs
load TCOUNT from TPERIOD

n+12 5 No decrement

n+13 5 Decrement TCOUNT

n+14 4 No decrement

n+15 4 Decrement TCOUNT, etc.

Table 6-2. Example Of Timer Operation (Cont’d)

Cycle TCOUNT Action
ADSP-218x DSP Hardware Reference 6-5

Enabling the Timer
One interrupt occurs every (TPERIOD +1) * (TSCALE +1) cycles. To set the
first interrupt at a different time interval from subsequent interrupts, load
TCOUNT with a different value from TPERIOD. The formula for the first
interrupt is (TCOUNT+1) * (TSCALE+1).

If you write a new value to TSCALE or TCOUNT, the change is effective imme-
diately. If you write a new value to TPERIOD, the change does not take
effect until after TCOUNT is reloaded.

Enabling the Timer
This section tells you how to enable the timer and generate interrupts. It
lists the steps you need to use and provides sample code (see Listing 6-1).

To enable the timer:

1. Set values for TCOUNT, TPERIOD, and TSCALE.

2. Set bit 0 in IMASK to enable interrupt.

3. Execute ENA TIMER instruction to start counting down (bit 5 in
MSTAT register).

Listing 6-1. Sample Code for Enabling the Timer and Generating
Interrupts

#include <def2181.h>

.SECTION/PM interrupts;

/* ------Interrupt vector table------ */
JUMP Start; NOP; NOP; NOP; /* reset vector */
RTI; NOP; NOP; NOP; /* IRQ2 */
RTI; NOP; NOP; NOP; /* IRQL1 */
RTI; NOP; NOP; NOP; /* IRQL0 */
RTI; NOP; NOP; NOP; /* SPORT0 transmit */
RTI; NOP; NOP; NOP; /* SPORT0 receive */
RTI; NOP; NOP; NOP; /* IRQE */
6-6 ADSP-218x DSP Hardware Reference

Timer
RTI; NOP; NOP; NOP; /* BDMA */
RTI; NOP; NOP; NOP; /* SPORT1 transmit */
RTI; NOP; NOP; NOP; /* SPORT1 receive */
JUMP Interrupt_Hit; NOP; NOP; NOP; /* timer */

.SECTION/PM Program;
Start:
/* set TSCALE to decrement every cycle */
AX0 = 0;
DM(Tscale_Reg) = AX0;
/* set TCOUNT to generate first interrupt at 50 cycles */
AX0 = 49;
DM(Tcount_Reg) = AX0;
/* set TPERIOD to reload TCOUNT with 99 at interrupt */
AX0 = 99;
DM(Tperiod_Reg) = AX0;
/* enable the timer interrupt */
IMASK = 0x1;
/* start the count down after executing this */
ENA TIMER;

/* ------Wait for timer interrupt------------ */
wait: IDLE;
 Jump wait;

Interrupt_Hit:RTI;
ADSP-218x DSP Hardware Reference 6-7

Enabling the Timer
6-8 ADSP-218x DSP Hardware Reference

7 SYSTEM INTERFACE
Figure 7-0.

Table 7-0.

Listing 7-0.
Overview
This chapter describes the basic system interface features of the
ADSP-218x family processors. The system interface includes various hard-
ware and software features used to control the DSP processor.

Processor control pins include a RESET signal, clock signals, flag inputs and
outputs, and interrupt requests. This chapter describes only the logical
relationships of control signals; consult individual processor data sheets
for actual timing specifications.

Pin Descriptions
This section provides functional descriptions of the ADSP-218x processor
pins. Because processors come in different packages, there are some differ-
ences in the pins contained on each. Table 7-1 shows the package
configurations for each ADSP-218x processor and the sections that follow
identify the pins for each package.

Table 7-1. ADSP-218x Processor Package Configurations

Processor Package

ADSP-2181 128-LQFP and 128-MQFP

ADSP-2183 128-LQFP and 144-Mini-BGA
ADSP-218x DSP Hardware Reference 7-1

Pin Descriptions
ADSP-2184 100-LQFP

ADSP-2184L1 100-LQFP

ADSP-2184N3 100-LQFP and 144-miniBGA

ADSP-2185 100-LQFP

ADSP-2185L1 100-Lead LQFP and 144-Mini-BGA

ADSP-2185M2 100-LQFP and 144-miniBGA

ADSP-2185N3 100-LQFP and 144-miniBGA

ADSP-2186 100-LQFP and 144-Mini-BGA

ADSP-2186L1 100-LQFP and 144-Mini-BGA

ADSP-2186M2 100-LQFP and 144-Mini-BGA

ADSP-2186N3 100-LQFP and 144-miniBGA

ADSP-2187L1 100-LQFP

ADSP-2187N3 100-LQFP and 144-miniBGA

ADSP-2188M2 100-LQFP and 144-Mini-BGA

ADSP-2188N3 100-LQFP and 144-miniBGA

Table 7-1. ADSP-218x Processor Package Configurations (Cont’d)

Processor Package
7-2 ADSP-218x DSP Hardware Reference

System Interface
Pin Descriptions for 128-LQFP Package Processors
Unlike the other ADSP-218x processors, the ADSP-2181 and
ADSP-2183 processors come in 128-LQFP and 128-MQFP packages. For
these two processors, the full address, data, and IDMA port signals are
brought out to external pins. The remainder of the ADSP-218x proces-
sors, which come in 100-LQFP packages, multiplex the address bus and a
portion of the data bus to achieve a lower package pinout.

ADSP-2189M2 100-LQFP and 144-Mini-BGA

ADSP-2189N3 100-LQFP and 144-miniBGA

1 L indicates that the processor operates at 3.3 V. These processors are
not tolerant to 5 V inputs

2 M indicates that the processor core operates at 2.5 V and that the
external I/O can operate between 2.5 V and 3.3 V. The external I/O
is tolerant to up to 3.6 V inputs with a supply voltage between
2.5 V and 3.3 V. However, it is not tolerant to 5 V inputs.

3 N indicates that the processor core operates at11.8 V and that the
external I/O can operate between 1.8 V or 3.3 V. The external I/O
is tolerant to up to 3.6 V inputs with a supply voltage of 1.8 V or
3.3 V. However, it is not tolerant to 5 V inputs.

Table 7-1. ADSP-218x Processor Package Configurations (Cont’d)

Processor Package
ADSP-218x DSP Hardware Reference 7-3

Pin Descriptions
Table 7-2 provides a description of the ADSP-2181 and ADSP-2183 pro-
cessor pins. All pin descriptions also apply to the ADSP-2183 processor in
the 144-Lead Mini-BGA package unless otherwise noted.

Table 7-2. ADSP-2181 and ADSP-2183 Processor
Pin Descriptions

Pin Name(s) # of
Pins

I/O Function

Address 14 O Address Output Pins for Program, Data, Byte, and
I/O spaces

Data 24 I/O Data I/O Pins for Program and Data Memory
Spaces (8 MSBs are also used as Byte Space
Addresses

RESET 1 I Processor Reset Input

IRQ2 1 I Edge- or Level-Sensitive Interrupt Request

IRQL0

IRQL1

1

1

I

I

Level-Sensitive Interrupt Requests

IRQE 1 I Edge-Sensitive Interrupt Requests

BR 1 I Bus Request Input

BG 1 O Bus Grant Output

BGH 1 O Bus Grant Hung Output

PMS 1 O Program Memory Select Output

DMS 1 O Data Memory Select Output

BMS 1 O Byte Memory Select Output

IOMS 1 O Memory Select Output
7-4 ADSP-218x DSP Hardware Reference

System Interface
CMS 1 O Combined Memory Select Output

RD 1 O Memory Read Enable Output

WR 1 O Memory Write Enable Output

MMAP 1 I Memory Map Select Input

BMODE 1 I Boot Option Control Input

CLKIN

XTAL

2 I Clock or Quartz Crystal Input

CLKOUT 1 O Processor Clock Output

SPORT0 5 I/O Serial Port I/O Pins

SPORT1 5 I/O Serial Port1 or two external IRQs, Flag In and Flag
Out

IRD

IWR

2 I IDMA Port Read/ Write Inputs

IS 1 I IDMA Port Select

IAL 1 I IDMA Port Address Latch Enable

IAD 16 I/O IDMA Port Address/Data Bus

IACK I O IDMA Port Access Ready

PWD 1 I Powerdown Control Input

PWDACK I O Powerdown Control Output

Table 7-2. ADSP-2181 and ADSP-2183 Processor
Pin Descriptions (Cont’d)

Pin Name(s) # of
Pins

I/O Function
ADSP-218x DSP Hardware Reference 7-5

Pin Descriptions
FL0, FL1, FL2 3 O Output Flags

PF7:0 8 I/O Programmable I/O Pins

EE 1 * Emulator only*

EBR 1 * Emulator only*

EBG 1 * Emulator only*

ERESET 1 * Emulator only*

EMS 1 * Emulator only*

EINT 1 * Emulator only*

ECLK 1 * Emulator only*

ELIN 1 * Emulator only*

ELOUT 1 * Emulator only*

Table 7-2. ADSP-2181 and ADSP-2183 Processor
Pin Descriptions (Cont’d)

Pin Name(s) # of
Pins

I/O Function
7-6 ADSP-218x DSP Hardware Reference

System Interface
Pin Descriptions for 100-LQFP Package Processors
In order to maintain maximum functionality and reduce package size and
pin count in the 100-LQFP packages, some serial port, programmable
flag, interrupt, and external bus pins have dual, multiplexed functionality.
The external bus pins are configured during RESET only, while serial port
pins are software configurable during program execution.

VDD

GND

6

11

Power

Ground

(Applies to ADSP-2181 and ADSP-2183 in 128-LQFP package only)

VDD

GND

11

22

Power

Ground

(Applies to ADSP-2183 in 144-Lead Mini-BGA package only)

* These pins must be connected only to the EZ-ICE connector in the target system. These pins
have no function except during emulation and do not require pull-up or pull-down resistors.

Table 7-2. ADSP-2181 and ADSP-2183 Processor
Pin Descriptions (Cont’d)

Pin Name(s) # of
Pins

I/O Function
ADSP-218x DSP Hardware Reference 7-7

Pin Descriptions
The programmable flag pins on the ADSP-218x 100-LQFP processors
retain the same functionality as those on the ADSP-2181 and ADSP-2183
128-LQFP packages but share these pins with interrupt pins. The pro-
grammable flag pins PF[7:4] are shared with interrupts IRQ2, IRQL1,
IRQL0, and IRQE, respectively. Both the programmable flags and interrupts
are directly connected to the shared pins. You use existing control registers
to choose the desired function for each pin. Each pin has four
possible states:

• IMASK[x]=0, PFTYPE[x]=0(PF Input)

• Read of PFDATA gives pin value

• No interrupt occurs

• Default after reset

• IMASK[x]=1, PFTYPE[x]=0(PF Input)

• Read of PFDATA gives pin value

• Interrupt occurs on level- or edge-transition

• IMASK[x]=0, PFTYPE[x]=1(PF Output)

• Write to PFDATA sets pin value

• Read of PFDATA gives set value

• No interrupt occurs

• IMASK[x]=1, PFTYPE[x]=1(PF Output)

• Write to PFDATA sets pin value and may cause interrupt
(level- or edge-sensitive)

• Read of PFDATA gives set value
7-8 ADSP-218x DSP Hardware Reference

System Interface
After reset, the PF pins default to inputs and the interrupts are disabled by
the IMASK register’s default value. The pins can be used as PF outputs by
changing the PFTYPE register and leaving the interrupt disabled in IMASK.
If the pins are to be used as interrupts, then the PFTYPE register need not
be changed, but the interrupt must be enabled in the IMASK register.

Common-Mode Pins

Table 7-3 provides a description of the pins that are common to both Full
Memory Mode and Host Memory Mode in 100-LQFP packages. In cases
where pin functionality is reconfigurable, the default state is shown in
plain text; alternate functionality is shown in italics. All pin descriptions
also apply to the processors in 144-Ball Mini-BGA packages unless other-
wise noted.

Table 7-3. Common-Mode Pins

Pin Name(s) Number
of Pins

I/O Function

RESET 1 I Processor Reset Input

BR 1 I Bus Request Input

BG 1 O Bus Grant Output

BGH 1 O Bus Grant Hung Output

DMS 1 O Data Memory Select Output

PMS 1 O Program Memory Select Output

IOMS 1 O Memory Select Output

BMS 1 O Byte Memory Select Output

CMS 1 O Combined Memory Select Output
ADSP-218x DSP Hardware Reference 7-9

Pin Descriptions
RD 1 O Memory Read Enable Output

WR 1 O Memory Write Enable Output

IRQ2

PF7

1 I

I/O

Edge- or Level-Sensitive Interrupt Request1

Programmable I/O Pin

IRQL1

PF6

1 I

I/O

Level-Sensitive Interrupt Requests1

Programmable I/O Pin

IRQL0

PF5

1 I

I/O

Level-Sensitive Interrupt Requests1

Programmable I/O Pin

IRQE

PF4

1 I

I/O

Edge-Sensitive Interrupt Requests1

Programmable I/O Pin

Mode D

PF3

1 I

I/O

Mode Select Input - Checked only during RESET

Programmable I/O Pin during normal operation

Mode C

PF2

1 I

I/O

Mode Select Input - Checked only during RESET

Programmable I/O Pin during normal operation

Mode B

PF1

1 I

I/O

Mode Select Input - Checked only during RESET

Programmable I/O Pin during normal operation

Mode A

PF0

1 I

I/O

Mode Select Input - Checked only during RESET

Programmable I/O Pin during normal operation

CLKIN

XTAL

2 I Clock or Quartz Crystal Input

Table 7-3. Common-Mode Pins (Cont’d)

Pin Name(s) Number
of Pins

I/O Function
7-10 ADSP-218x DSP Hardware Reference

System Interface
CLKOUT 1 O Processor Clock Output

SPORT0 5 I/O Serial Port I/O Pins

SPORT1

IRQ1:0, FI, FO

5 I/O Serial Port I/O Pins

Edge- or Level-Sensitive Interrupts, Flag In, Flag

Out2

PWD

PWDACK

FL0, FL1, FL2

1

I

3

I

O

O

Powerdown Control Input

Powerdown Control Output

Output Flags

VDD

GND

6

10

I

I

Power

Ground

(Applies to all ADSP-2184, ADSP-2184L, ADSP-2185, ADSP-2185L, ADSP-2186,
ADSP-2186L, ADSP-2187L processors in 100-Lead LQFP package only)

VDD

GND

11

20

I

I

Power

Ground

(Applies to ADSP- 2185L, ADSP-2186, and ADSP- 2186L processors in 144-Mini-BGA
package only)

VDDINT

VDDEXT

GND

2

4

10

I

I

I

Internal VDD (2.5V) Power

External VDD (2.5V or 3.3V) Power

Ground

(Applies to all ADSP-218x M and N series processors in 100-Lead LQFP package only)

Table 7-3. Common-Mode Pins (Cont’d)

Pin Name(s) Number
of Pins

I/O Function
ADSP-218x DSP Hardware Reference 7-11

Pin Descriptions
Memory Mode Pins
Table 7-4 provides a description of Full Memory Mode pins and Table 7-5
provides a description of the Host Memory Mode pins on ADSP-218x
processors in 100-lead LQFP and 144-MBGA packages.

VDDINT

VDDEXT

GND

4

7

20

I

I

I

Internal VDD (2.5V) Power

External VDD (2.5V or 3.3V) Power

Ground

(Applies to all ADSP-218x M and N series processors in 144-Ball Mini-BGA package only)

EZ-Port 9 I/O For emulation use

1 Interrupt/Flag Pins retain both functions concurrently. If IMASK is set to enable the correspond-
ing interrupts, then the DSP will vector to the appropriate interrupt vector address when the pin
is asserted, either by external devices, or set as a programmable flag.

2 SPORT configuration determined by the DSP System Control register. Software configurable.

Table 7-4. Full Memory Mode Pins (Mode C = 0)

Pin Name Number
of Pins

I/O Function

A13:0 14 O Address Output Pins for Program, Data, Byte and
I/O Spaces

D23:0 24 I/O Data I/O Pins for Program, Data, Byte and I/O
Spaces (8 MSBs are also used as Byte Memory
addresses)

Table 7-3. Common-Mode Pins (Cont’d)

Pin Name(s) Number
of Pins

I/O Function
7-12 ADSP-218x DSP Hardware Reference

System Interface
Active or Passive Mode Pin Configuration

To decrease the package size of the ADSP-218x family processors for the
100-LQFP packages, the IDMA bus and associated control signals are
multiplexed with the external Address and Data busses. The logic value of
the Mode pins are latched on the rising edge of the RESET signal. The val-
ues of the Mode pins determine whether the DSP will boot from an
EPROM or be booted from an external host processor.

The Mode pins also determine whether the DSP’s external pins are used
for IDMA accesses (Host Memory mode) or whether the full 14-bit
address bus and 24-bit data bus is active (Full Memory mode).

Table 7-5. Host Memory Mode Pins (Mode C = 1)

Pin Name Number
of Pins

I/O Function

IAD15:0 16 I/O IDMA Port Address/Data Bus

A0 1 O Address Pin for External I/O, Program, Data, or

Byte access1

D23:8 16 I/O Data I/O Pins for Program, Data Byte and I/O
spaces

IWR 1 I IDMA Write Enable

IRD 1 I IDMA Read Enable

IAL 1 I IDMA Address Latch Pin

IS 1 I IDMA Select

IACK 1 O IDMA Port Acknowledge Configurable in Mode D;
Open Drain

1 In Host Mode, external peripheral addresses can be decoded using the A0, CMS, PMS,
DMS, and IOMS signals.
ADSP-218x DSP Hardware Reference 7-13

Pin Descriptions
The Mode pins can be set for active or passive configuration. An active
configuration means that the Mode pin is used as a Mode pin during reset,
but also functions alternately as a Programmable Flag pin or Interrupt Sig-
nal during runtime. Passive configuration means that the Mode pin is
used only as a Mode pin and has no alternate function during runtime.

A passive configuration is more easily implemented because only a simple
pullup or pulldown resistor is needed to maintain a proper logic level for
the Mode pin. (Tying a Mode pin directly to VDD or GND is also acceptable.)

An Active configuration requires either a weak pullup or pulldown (on the
order of 100 kΩ) or some type of tristate driver or logic gate to allow for
proper operation of the pin during its alternate mode of functioning as a
Programmable Flag pin or Interrupt signal. (A weak pullup or pulldown
resistor is used to reduce the amount of current flow to the input pin of
the DSP and to minimize the amount of current going through an output
driver.) For more information on setting the Mode pins for an active or
passive configuration, please see “Using Mode Pins with RESET and
ERESET Signals” on page 7-64.

Terminating Unused Pins

Table 7-6 shows the recommendations for terminating unused pins. Addi-
tional recommendations follow the table.

! Table 7-6 shows the multiplexed pins for the Host Memory mode
and Full Memory mode of the 100-pin processors. These multi-
plexed pins are grouped in pairs. The pins listed in this table also
apply to the ADSP-2181 and ADSP-2183 processors.
7-14 ADSP-218x DSP Hardware Reference

System Interface
Table 7-6. Pin Terminations

Pin Name I/O Tri-State
(Z)

Reset State Hi-Z* Caused By… Unused
Configuration

XTAL I I Float

CLKOUT O O Float

A13:1 or

IAD 12:0

O (Z)

I/O (Z)

Hi-Z

Hi-Z

BR, EBR

IS

Float

Float

A0 O (Z) Hi-Z BR, EBR Float

D23:8 I/O (Z) Hi-Z BR, EBR Float

D7 or

IWR

I/O (Z)

I

Hi-Z

I

BR, EBR Float

High (Inactive)

D6 or

IRD

I/O (Z)

I

Hi-Z

I

BR, EBR Float

High (Inactive)

D5 or

IAL

I/O (Z)

I

Hi-Z

I

Float

Low (Inactive)

D4 or

IS

I/O (Z)

I

Hi-Z

I

BR, EBR Float

High (Inactive)

D3 or

IACK

I/O (Z) Hi-Z BR, EBR Float

Float

D2:0 or

IAD15:13

I/O (Z)

I/O (Z)

Hi-Z

Hi-Z

BR, EBR

IS

Float

Float

PMS O (Z) O BR, EBR Float

DMS O (Z) O BR, EBR Float

BMS O (Z) O BR, EBR Float
ADSP-218x DSP Hardware Reference 7-15

Pin Descriptions
IOMS O (Z) O BR, EBR Float

CMS O (Z) O BR, EBR Float

RD O (Z) O BR, EBR Float

WR O (Z) O BR, EBR Float

BR I I High (Inactive)

BG O (Z) O EE Float

BGH O O Float

IRQ2/PF7 I/O (Z) I Input = High (Inac-
tive) or program as
Output, Set to 1, Let
float

IRQL1/PF6 I/O (Z) I Input = High (Inac-
tive) or program as
Output, Set to 1, Let
float

IRQL0/PF5 I/O (Z) I Input = High (Inac-
tive) or program as
Output, Set to 1, Let
float

IRQE/PF4 I/O (Z) I Input = High (Inac-
tive) or program as
Output, Set to 1, Let
float

SCLK0 I/O I Input = High or Low,
Output = Float

Table 7-6. Pin Terminations (Cont’d)

Pin Name I/O Tri-State
(Z)

Reset State Hi-Z* Caused By… Unused
Configuration
7-16 ADSP-218x DSP Hardware Reference

System Interface
RFS0 I/O I High or Low, Let
float if SPORT0 is
disabled

DR0 I I High or Low, Let
float if SPORT0 is
disabled

TFS0 I/O I High or Low, Let
float if SPORT0 is
disabled

DT0 O O Float

SCLK1 I/O I Input = High or Low,
Output = Float

RFS1/IRQ0 I/O I High or Low

DR1/FI I I High or Low, Float if
SPORT1 is disabled
and the pin is not
configured as FI

TFS1/IRQ1 O/I I High or Low

DT1/FO O O Float

EE I I Float

EBR I I Float

EBG O O Float

ERESET I I Float

EMS O O Float

EINT I I Float

Table 7-6. Pin Terminations (Cont’d)

Pin Name I/O Tri-State
(Z)

Reset State Hi-Z* Caused By… Unused
Configuration
ADSP-218x DSP Hardware Reference 7-17

Pin Descriptions
NOTES
* Hi-Z = High impedance
1. CLKIN, RESET, and PF3:0/Mode D:Mode A are not included in the table because these pins must

be used.
2. All bidirectional pins have tri-stated outputs. When a pin is configured as an output, the output is Hi-Z

(high impedance) when inactive.

Recommendations for Unused Pins

The following is a list of recommendations for unused pins:

• If the CLKOUT pin is not used, turn it OFF, using CLKODIS in the
SPORT0 Autobuffer Control register.

• If the Interrupt/Programmable Flag pins are not used, there are two
options:

• When these pins are configured as inputs at reset and func-
tion as interrupts and input flag pins, pull the pins High
(inactive).

• Program the unused pins as outputs. Set them to 1 prior to
enabling interrupts and let the pins float.

• If a flag pin is not used, configure it as an output. If for some reason,
you cannot configure it as an output, configure it as an input. Use
a 100 kΩ pull-up resistor to VDD (or, if this is not possible, use a
100 kΩ pull-down resistor to GND).

ECLK I I Float

ELIN I I Float

ELOUT O O Float

Table 7-6. Pin Terminations (Cont’d)

Pin Name I/O Tri-State
(Z)

Reset State Hi-Z* Caused By… Unused
Configuration
7-18 ADSP-218x DSP Hardware Reference

System Interface
• If a SPORT is not used completely and if the SPORT pins do not
have a second functionality, disable the SPORT and let the pins
float.

• If the receiver on a SPORT is the only part being used, use resistors
on the other pins. However, if the other pins are outputs, let them
float.

Clock Signals
The ADSP-218x family processors may be operated with a TTL-compati-
ble clock signal input to the CLKIN pin or with a crystal connected between
the CLKIN and XTAL pins. If an external clock is used, XTAL must be left
unconnected. The CLKIN signal may not be halted, changed, or operated
below the specified frequency during normal operation.

The ADSP-218x family processors operate with an input clock frequency
equal to half the instruction rate; for example, a 16.67 MHz input clock
produces a 33 MHz instruction rate (30 ns cycle time). Device timing is
relative to the internal clock rate which is indicated by the CLKOUT signal.

Because these processors include an on-chip oscillator circuit, an external
crystal can be used. The crystal should be connected between the CLKIN
and XTAL pins, with two capacitors connected as shown in Figure 7-1. A
parallel-resonant, fundamental frequency, microprocessor-grade crystal
should be used. The frequency value selected for the crystal should be half
the desired instruction rate.
ADSP-218x DSP Hardware Reference 7-19

Clock Signals
.

Due to the high operating processor core clock speed requirements on
some of the ADSP-218x DSPs, it may be advantageous to use a
third-overtone crystal rather than a fundamental frequency crystal as an
input clock signal in your design. Figure 7-2 shows a sample third over-
tone schematic.

CLKIN CLKOUTXTAL

ADSP-218X

Figure 7-1. External Crystal Connections

XTALCLKIN CLKOUT

ADSP-218X

Figure 7-2. Third-Overtone Crystal
7-20 ADSP-218x DSP Hardware Reference

System Interface
In this schematic, a parallel LC circuit is used as a bandpass filter to allow
the third harmonic through to the crystal input of the DSP. For example,
to operate an ADSP-2189M processor at 75 MHz, an input clock signal
with a frequency of 37.5 MHz is required. Using a third overtone crystal
circuit would allow you to use a 37.5 MHz third overtone crystal.

The internal phased lock loop (PLL) of the processors generates an inter-
nal clock that is four times the instruction rate.

The processors also generate a CLKOUT signal which is synchronized to the
processors’ internal cycles and operates at the instruction cycle rate. A
phase-locked loop is used to generate CLKOUT and to divide each instruc-
tion cycle into a sequence of internal time periods called processor states.
The relationship between the phases of CLKIN, CLKOUT, and the processor
states is shown in Figure 7-3. The phases of the internal processor clock
are dependent upon the period of the external clock.

The CLKOUT output can be disabled on the ADSP-218x processors. This is
controlled by the CLKODIS bit in the SPORT0 Autobuffer Control
Register.

CLKIN

CLKOUT

INTERNAL

PROCESSOR

STATE

1 2 3 44

PROCESSOR

CYCLE

1 2 3 4

PROCESSOR

CYCLE

Figure 7-3. Clock Signals & Processor States
ADSP-218x DSP Hardware Reference 7-21

Clock Signals
Synchronization Delay
Each processor has several asynchronous inputs (interrupt requests, for
example), which can be asserted in arbitrary phase to the processor clock.
The processor synchronizes such signals before recognizing them. The
delay associated with signal recognition is called synchronization delay.

Different asynchronous inputs are recognized at different points in the
processor cycle. Any asynchronous input must be valid prior to the recog-
nition point to be recognized in a particular cycle. If an input does not
meet the setup time on a given cycle, it is recognized either in the current
cycle or during the next cycle if it remains valid.

Edge-sensitive interrupt requests are latched internally so that the request
signal only has to meet the pulse width requirement. To ensure the recog-
nition of any asynchronous input, however, the input must be asserted for
at least one full processor cycle plus setup and hold time. Setup and hold
times are specified in the data sheet for each individual device.

1/2x Clock Considerations
Each processor requires only a 1/2x frequency clock signal. They use what
is effectively an on-chip phase-locked loop to generate the higher fre-
quency internal clock signals and CLKOUT. Because these clocks are
generated based on the rising edge of CLKIN, there is no ambiguity about
the phase relationship of two processors sharing the same input clock.
Multiple processor synchronization is simplified as a result.

Using a 1/2x frequency input clock with the phase-locked loop to generate
the various internal clocks imposes certain restrictions. The CLKIN signal
must be valid long enough to achieve phase lock before RESET can be deas-
serted. Also, the clock frequency cannot be changed unless the processor is
in RESET. Refer to the relevant ADSP-218x processor data sheet for details.
7-22 ADSP-218x DSP Hardware Reference

System Interface
Resetting the Processor
The RESET signal halts execution and causes a hardware reset of the proces-
sor. The RESET signal must be asserted when the processor is powered up
to assure proper initialization. RESET during initial powerup must be held
long enough to allow the internal clock to stabilize.

The power-up sequence is defined as the total time required for the crystal
oscillator circuit to stabilize after a valid VDD is applied to the processor and
for the internal PLL to lock onto the specific crystal frequency. A mini-
mum of 2000 CLKIN cycles ensures that the PLL has locked, but it does not
include the crystal oscillator start-up time. During the power-up sequence
the RESET signal should be held low.

If RESET is activated any time after powerup, the clock continues to run
and does not require stabilization time.

! If a clock has not been supplied during RESET, the processor does not
know it has been reset and the registers won’t be initialized to the
proper values.

At powerup, if RESET is held low (asserted) without any input clock
signal, the states of the internal transistors are unknown and uncon-
trolled. This condition could lead to processor damage.

Table 7-8 on page 7-25 shows the RESET state of various registers, includ-
ing the processors’ on-chip memory-mapped status/control registers. The
values of any registers not listed are undefined at reset. The contents of
on-chip memory are unchanged after RESET, except as shown in Table 7-8
on page 7-25 for the data-memory-mapped control/status registers. The
CLKOUT signal continues to be generated by the processor during RESET,
except when disabled.
ADSP-218x DSP Hardware Reference 7-23

Software-Forced Rebooting
The contents of the computation unit (ALU, MAC, Shifter) and data
address generator (DAG1, DAG2) registers are undefined following RESET.
When RESET is released, the processor’s booting operation takes place,
depending on the state of the processor’s MMAP pin. (Program booting is
described in Chapter 8, “Memory Interface”.)

In a multiprocessing system with several processors, a synchronous RESET
is required.

! When the power supply and clock remain valid, the content of the
on-chip memory is not changed by a pulsed RESET line.

Software-Forced Rebooting
Software-forced reboots can be accomplished in different ways. A soft-
ware-forced reboot clears the context of the processor and initializes some
registers. A context clear clears the processor stacks and restarts execution
at address 0x0000. Table 7-7 shows the two different ways the
ADSP-218x processor can perform a software reboot.

Table 7-7. Software-Forced Rebooting

Reboot Method Description

Powerup Context
Reset

Setting the PUCR bit in the SPORT1 Autobuffer and
Powerdown Control register causes a reboot on
recovery from powerdown

BDMA Context
Reset

Setting the BCR bit in the BDMA Control register
before writing to the BDMA Word Count register
(BWCOUNT) causes a reboot. Execution starts after
the BDMA reboot is completed.
7-24 ADSP-218x DSP Hardware Reference

System Interface
Table 7-8 shows the state of the processor registers after a software-forced
reboot. The values of any registers not listed are unchanged by a reboot.

During booting (and rebooting), all interrupts including serial port inter-
rupts are masked and autobuffering is disabled. The serial port(s) remain
active; one transfer—from internal shift register to data register—can
occur for each serial port before there are overrun problems.

The timer runs during a reboot. If a timer interrupt occurs during the
reboot, it is masked. Thus, if more than one timer interrupt occurs during
the reboot, the processor latches only the first.

Table 7-8. ADSP-218x Processor State After Reset or Software
Reboot

Control Field Description Reset Reboot

Bus Exchange register

PX PX register Undefined Undefined

Status registers

IMASK Interrupt service enables 0 0

ASTAT Arithmetic status 0 0

MSTAT Mode status 0 Unchanged

SSTAT Stack status 0x55 0x55

ICNTL Interrupt control Undefined Unchanged

IFC Interrupt force/clear 0 0
ADSP-218x DSP Hardware Reference 7-25

Software-Forced Rebooting
Control registers (memory-mapped)

BPAGE Boot page 0 Unchanged

SPORT1 configure Configuration 1 Unchanged

SPE0 SPORT0 enable 0 Unchanged

SPE1 SPORT1 enable 0 Unchanged

TCOUNT Timer count register Undefined Operates during
reboot

TPERIOD Timer period register Undefined Unchanged

TSCALE Timer scale register Undefined Unchanged

PDFORCE Powerdown force 0 Unchanged

PUCR Powerup context reset 0 Unchanged

XTALDIS XTAL pindrive disable
during powerdown

0 Unchanged

XTALDELAY Delay startup from power-
down (4096 cycles)

0 Unchanged

Serial Port Control registers (memory-mapped, one set per SPORT)

ISCLK Internal serial clock 0 Unchanged

RFSR, TFSR Frame sync required 0 Unchanged

RFSW, TFSW Frame sync width 0 Unchanged

IRFS, ITFS Internal frame sync 0 Unchanged

Table 7-8. ADSP-218x Processor State After Reset or Software
Reboot (Cont’d)

Control Field Description Reset Reboot
7-26 ADSP-218x DSP Hardware Reference

System Interface
INVRFS, INVTFS Invert frame sense 0 Unchanged

DTYPE Companding type, format 0 Unchanged

SLEN Serial word length 0 Unchanged

SCLKDIV Serial clock divide Undefined Unchanged

RFSDIV RFS divide Undefined Unchanged

Multichannel word enable bits Undefined Unchanged

MCE Multichannel enable 0 Unchanged

MCL Multichannel length 0 Unchanged

MFD Multichannel frame delay 0 Unchanged

INVTDV Invert transmit data valid 0 Unchanged

RBUF, TBUF Autobuffering enable 0 0

TIREG, RIREG Autobuffer I index Undefined Unchanged

TMREG, RMREG Autobuffer M index Undefined Unchanged

FO (SPORT1 only) Flag Out value Undefined Unchanged

CLKODIS CLKOUT disable 0 Unchanged

BIASRND MAC biased rounding 0 Unchanged

Table 7-8. ADSP-218x Processor State After Reset or Software
Reboot (Cont’d)

Control Field Description Reset Reboot
ADSP-218x DSP Hardware Reference 7-27

Software-Forced Rebooting
External Memory Control Registers (non-memory-mapped)

DMOVLAY Data memory overlay
select

0 Unchanged

PMOVLAY Program memory overlay
select

0 Unchanged

External Memory Control registers (memory-mapped)

DWAIT Data memory overlay wait
states

15 (M and
N series
DSPs only)

0x7 (All
other DSPs)

Unchanged

PWAIT Program memory overlay
wait states

15 (M and
N series
DSPs only)

0x7 (All
other DSPs)

Unchanged

BMWAIT Byte memory wait states 15 (M and
N series
DSPs only)

0x7 (All
other DSPs)

Unchanged

IOWAIT0-3 I/O memory wait states 15 (M and
N series
DSPs only)

0x7 (All
other DSPs)

Unchanged

CMSSEL Composite memory select 0xB Unchanged

Table 7-8. ADSP-218x Processor State After Reset or Software
Reboot (Cont’d)

Control Field Description Reset Reboot
7-28 ADSP-218x DSP Hardware Reference

System Interface
Programmable Flag Data & Control registers (memory-mapped)

PFDATA Programmable flag data Undefined Unchanged

PFTYPE Programmable flag
direction

0 Unchanged

DMA Control registers (memory-mapped)

IDMAA IDMA Internal Memory
Address

Undefined Unchanged

IDMAD IDMA Destination
Memory Type

Undefined Unchanged

BIAD BDMA Internal Memory
Address

0 0x201

BEAD BDMA External Memory
Address

0 0x601

BTYPE BDMA Transfer Word
Type

0 Unchanged

BDIR BDMA Transfer Direction 0 Unchanged

BCR BDMA Context Reset 1 Unchanged

BWCOUNT BDMA Word Count 0x20 01

BMPAGE External Byte Memory
Page

0 01

1 These values assume that you have just completed an initial BDMA boot load. For more infor-
mation on BDMA register contents during the boot loading process see Table 7-9. These values
will vary with a processor reboot (other than initial load), since they depend on the previous
values.

Table 7-8. ADSP-218x Processor State After Reset or Software
Reboot (Cont’d)

Control Field Description Reset Reboot
ADSP-218x DSP Hardware Reference 7-29

Software-Forced Rebooting
Register Values for BDMA Booting
The state of some registers during reset and rebooting is influenced by the
MMAP and BMODE pins in the ADSP-2181 and ADSP-2183 processors and in
all other ADSP-218x processors when they are in Full Memory Mode. If
these pins are set for a BDMA boot, the values in the BDMA registers
change as shown in Table 7-9.

Table 7-9. BDMA Registers before and after Initial Boot Loading

Register Description1 Value Before Boot Value After Boot

BIAD BDMA Internal Memory Address.
Set for internal address 0.

0 0x20

BEAD BDMA External Memory Address.
Set for external address 0.

0 0x60

BTYPE BDMA Transfer Word Type. Set
for 24-bit program memory words.

0 0

BDIR BDMA Transfer Direction. Set to
transfer data from byte memory.

0 0

BMPAGE BDMA Page Selection. Set to byte
memory page 0.

0 0

BWCOUNT BDMA Word Count. Set to trans-
fer 32 words.

0x20 0

BMWAIT BDMA Port Wait States. Set to 7
waits per transfer.

0xF (M and N series
DSPs only)

0x7 (All other DSPs)

0xF (M and N series
DSPs only)

0x7 (All other DSPs)
7-30 ADSP-218x DSP Hardware Reference

System Interface
External Interrupts
ADSP-218x family processors have a number of prioritized, individually
maskable, external interrupts, which can be either level- or edge-triggered.
These interrupt request pins are named IRQ0, IRQ1, and IRQ2. The IRQ0
and IRQ1 pins are only available as the (optional) alternate configuration of
SPORT1. The configuration of SPORT1 as either a serial port or as inter-
rupts (and flags) is determined by bit 10 of the processor’s system control
register.

The ADSP-218x processors also have two dedicated level-triggered inter-
rupt request pins and one dedicated edge-triggered interrupt request pin;
these are IRQL0, IRQL1, and IRQE, respectively.

Internal interrupts, including serial port, timer, and DMA, are discussed
in other chapters. Additional information about interrupt masking, set up,
and operation can be found in Chapter 3, Program Sequencer.

BCR BDMA Context Reset2 1 1

BMOVLAY3 BDMA Overlay value 0 0

1 Assumes MMAP=0 and BMODE=0 for a BDMA boot (applies to ADSP-2181 and
ADSP-2183 processors) or MODEA=0 and MODEB=0 for all other ADSP-218x processors).

2 Set to 1 to:
(a) Hold off instruction execution during BDMA transfer
(b) Start execution at address PM(0x0000) after BDMA transfer
(c) Leave a BDMA interrupt pending
This sequence of events occurs if BCR is set before BWCOUNT is written, or after the initial boot.

3 Applies only to the following processors: ADSP-2187L/N, ADSP-2188M/N, and
ADSP-2189M/N.

Table 7-9. BDMA Registers before and after Initial Boot Loading (Cont’d)

Register Description1 Value Before Boot Value After Boot
ADSP-218x DSP Hardware Reference 7-31

External Interrupts
Interrupt Sensitivity
Individual external interrupts can be configured in the ICNTL register as
either level-sensitive or edge-sensitive.

Level-sensitive interrupts operate by asserting the interrupt request line
(IRQx) until the request is recognized by the processor. Once recognized,
the request must be deasserted before unmasking the interrupt so that the
DSP does not continually respond to the interrupt.

In contrast, edge-triggered interrupt requests are latched when any
high-to-low transition occurs on the interrupt line. The processor latches
the interrupt so that the request line may be held at any level for an arbi-
trarily long period between interrupts. This latch is automatically cleared
when the interrupt is serviced. Edge-triggered interrupts require less exter-
nal hardware than level-sensitive requests since there is never a need to
hold or negate the request. With level-sensitive interrupts, however, many
interrupting devices can share a single request input; this allows easy sys-
tem expansion.

An interrupt request will be serviced if it is not masked (in the IMASK regis-
ter) and a higher priority request is not pending. Valid requests initiate an
interrupt servicing sequence that vectors the processor to the appropriate
interrupt vector address. See Chapter 3, “Program Sequencer” for the
ADSP-218x processor interrupt vector addresses. There is a synchroniza-
tion delay associated with both external interrupt request lines and
internal interrupts.

If an interrupt occurs during a waitstated external memory access or dur-
ing the extra cycles required to execute an instruction that accesses
external memory more than once, it is not recognized between the cycles,
only before or after. Edge-sensitive interrupts are latched, but not ser-
viced, during bus grant (BG) unless the Go mode is enabled.
7-32 ADSP-218x DSP Hardware Reference

System Interface
In order to service an interrupt, the processor must be running and exe-
cuting instructions. The IDLE instruction can be used to effectively halt
processor operations while waiting for an interrupt.

Edge-sensitive and level-sensitive interrupt requests are serviced similarly.
Edge-sensitive interrupts may remain active (low) indefinitely, while
level-sensitive interrupts must be deasserted before the RTI instruction is
executed; otherwise, the same interrupt immediately recurs.

Care must be taken with the serial port (SPORT1) that can be configured
for alternate functions (IRQ0 and IRQ1). If the RFS1 or TFS1 input is held
low when SPORT1 is configured as the serial port and then is reconfig-
ured as IRQ0 and IRQ1, an interrupt request can be generated. This
interrupt request can be cleared with the use of the IFC register.

Flag Pins
All ADSP-218x processors provide flag pins. The alternate configuration
of SPORT1 includes a Flag In (FI) pin and a Flag Out (FO) pin. The con-
figuration of SPORT1 as either a serial port or as flags and interrupts is
selected by bit 10 of the processor’s System Control register.

The FI pin can be used to control program branching, using the IF
FLAG_IN and IF NOT FLAG_IN conditions of the JUMP and CALL instructions.
These conditions are evaluated based on the last state of the FI pin;
FLAG_IN is true if FI was last sampled as a 1 and false if last sampled as a 0.
FO can be used as a general purpose external signal. The state of FO is also
available as a read-only bit of the SPORT1 control register.
ADSP-218x DSP Hardware Reference 7-33

Flag Pins
The ADSP-218x processors have three additional flag output pins: FL0,
FL1, and FL2. These flags (and FO) can be controlled in software to signal
events or conditions to any external device such as a host processor. The
Modify Flag Out instruction, which is conditional, can perform SET,
RESET and TOGGLE actions — this instruction allows programs executing on
the DSP processor to control the state of its flag output pins. Note that if
the condition in the Modify Flag Out instruction is CE (counter expired),
the counter is not decremented as in other IF CE instructions.

Flag outputs FL0, FL1 and FL2 are set to 1 at RESET. The Flag Out (F0) is
not affected by RESET.

The ADSP-218x processors have eight additional general-purpose flag
pins, PF7–0. These flags can be programmed as either inputs or outputs;
they default to inputs following reset. The PFx pins are programmed with
the use of two memory-mapped registers. The Programmable Flag register
(shown in Figure 7-4) determines the flag direction: 1=output and
0=input. The Programmable Flag Data register (shown in Figure 7-5) is
used to read and write the values on the pins.

Program mable Flag

PFTYP E

1 = output

0 = input

DM(0x3FE6)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 00 0 0 0

Figure 7-4. Programmable Flag Register
7-34 ADSP-218x DSP Hardware Reference

System Interface
Data being read from a pin configured as an input is synchronized to the
processor’s clock. Pins configured as outputs drive the appropriate output
value. When the PFDATA register is read, any pins configured as outputs
will read back the value being driven out.

Powerup Issues
The ADSP-218x dual-voltage M and N series processors have special
issues related to powerup. These issues include the powerup sequence and
the dual-voltage power supplies. This section discusses both these issues. it
also gives information about reset generators, which provide a reliable
active reset once the power supplies and internal clock circuits have
stabilized.

Powerup Sequence
The following recommendations should be observed when powering
dual-voltage DSP’s. Ideally the two supplies, VDDEXT and VDDINT, should be
powered up together. If they cannot be powered up together, the internal
(core) supply should be powered up first. Powering up the core supply
first reduces the risk of latchup events.

PFDATA

Programmable Flag Data

DM(0x3FE5)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 7-5. Programmable Flag Data Register
ADSP-218x DSP Hardware Reference 7-35

Powerup Issues
A network of protection diodes, as shown in Figure 7-6, isolates the inter-
nal supplies and provides ESD protection for the IO pins. When applying
power separately to the VDDINT or VDDEXT pins, care should be taken to limit
the maximum supply current and duration that would be conducted
through the isolation diodes if the unpowered pins are at ground
potential.

If an external master clock is used, it should not be driving the CLKIN pin
when the DSP is unpowered. The clock must be driven immediately after
powerup; otherwise, internal gates stay in an undefined (hot) state and can
draw excess current. After powerup, there should be sufficient time for the
internal PLL to stabilize (2000 clock cycles) before the reset is released.

ADSP-218X M-SERIES DSP

INTERNAL LOGIC

VDDEXT VDDINT

(2.5V)(2.5-3.3V)

IO PIN

OUTPUT

INPUT

Figure 7-6. Protection Diodes and IO Pin ESD Protection
7-36 ADSP-218x DSP Hardware Reference

System Interface
In addition, time should be allowed for the oscillator to start up and reach
full amplitude. This may take 100 ms, depending upon choice of crystal,
operating frequency, loop gain, and capacitor ratios. Startup time may be
more significant than the 2000 clock cycles needed for the PLL to
stabilize.

Power Supplies

The following lists the power supplies that ADSP-218x processors can use:

• ADSP-218x L series processors use a single 3.3 V power supply

• ADSP-218x M series processors can use either a single 2.5 V power
supply or a 2.5 V internal power supply and a 3.3 V power supply
for I/O

• ADSP-218x N series processors can use either a single 1.8 V power
supply or a 1.8 V internal power supply and either a 2.5 V or a 3.3 V
power supply for I/O
ADSP-218x DSP Hardware Reference 7-37

Powerup Issues
Dual Supply Example

To provide 2.5 V and 3.3 V power supplies for the ADSP-218x M series
processors, it is suggested that a dual regulator, powered from a common
source, be used. Analog Devices does not currently have a 2.5 V/3.3 V
dual-output regulator; however, it does have several suitable single output
regulators.

We suggest the low drop-out regulators, ADP3330ART-2.5 and
ADP3330ART-3.3, which are identical parts but with different (fixed)
output voltages. These regulators are available in SOT-23-6, a very small,
six lead surface mount package, and will provide 2.5 V @ 70 mA and
3.3 V @ 90 mA from a 5 V supply at ambient temperatures up to 85°C.
This power supply is suitable for the dual-voltage M series of DSPs—up
to their maximum operating temperature and clock frequencies.

These regulators also accept an active low, shut down signal, which is use-
ful for many low power applications that require power saving schemes.
An open collector output error signal is available to permit appropriate
action in the event that the input voltage has fallen too low to permit effi-
cient regulation.
7-38 ADSP-218x DSP Hardware Reference

System Interface
Figure 7-6 provides a suggested schematic using these regulators.

2

3

6

1

5

4

10 F

10 F

SHTDWN

ERR

SD

NR

GND

2

3

6

1

5

4

10 F

REGERR

20K

(70mA MAX)

(107mA MAX)

ERR

SD

VO U T

NR

GND

µ

µ

µ

10 Fµ

ADP3330ART-3.3

ADP3330AR T-2.5

+2.5VD DIN T

+3.3V DD EXT
VIN VIN VO U T

VIN

Figure 7-7. Suggested Dual Power Supply for ADSP-218x M Series DSPs
ADSP-218x DSP Hardware Reference 7-39

Powerup Issues
Reset Generators
It is important that a DSP (or programmable device) have a reliable active
RESET that is released once the power supplies and internal clock circuits
have stabilized. The RESET signal should not only offer a suitable delay,
but it should also have a clean monotonic edge. Analog Devices has a
range of microprocessor supervisory ICs with different features. Features
include one or more of the following:

• Powerup reset

• Optional manual reset input

• Power low monitor

• Back-up battery switching

Part number series for Analog Devices’ supervisory circuits are as follows:

• ADM69x

• ADM70x

• ADM80x

• ADM1232

• ADM181x

• ADM869x
7-40 ADSP-218x DSP Hardware Reference

System Interface
A simple powerup reset circuit is shown below, using the ADM809-RART
reset generator. The ADM809 provides an active low RESET signal when-
ever the supply voltage is below 2.63 V. At powerup, a 240 ms active reset
delay is generated to give the power supplies and oscillators time to
stabilize.

V

RESET

GND

ADM 809-RART

V
DDEXT

RESET

GND

+3.3V
DDEXT

10µF

CC

ADSP-218X-M

V
DDINT

+2.5V
DDINT

Figure 7-8. Simple Reset Generator for M Series DSPs
ADSP-218x DSP Hardware Reference 7-41

Powerup Issues
Another part, the ADM706TAR, provides poweron RESET and optional
manual RESET. It allows designers to create a more complete supervisory
circuit that monitors the supply voltage. Monitoring the supply voltage
allows the system to initiate an orderly shutdown in the event of power
failure. The ADM706TAR also allows designers to create a watchdog
timer that monitors for software failure. This part is available in an eight
lead SOIC package. Figure 7-9 shows a typical application circuit using
the ADM706TAR.

RESET

IRQ2

IRQL1

FL0

GND
RESET

Vt=+1.25V

VSENSE

VDDEXT

PFI

MR

WDI

PFO

WDO

GND

4

1

6

5

8

3

ADM706TAR
VCC

2
RST

7

100nF

10µF

100nF

VDDEXT +3.3V

ADSP-218x-M

Figure 7-9. Reset Generator and Power Supply Monitor
7-42 ADSP-218x DSP Hardware Reference

System Interface
Powerdown
The ADSP-218x processors provide a powerdown feature that allows the
processor to enter a very low power dormant state through hardware or
software control. In this CMOS standby state, power consumption is less
than 1 mW (approximate). (Refer to the processor data sheet for exact
power consumption specifications.)

The powerdown feature is useful for applications where power conserva-
tion is necessary, for example in battery-powered operation. Features of
powerdown include:

• Internal clocks are disabled

• Processor registers and memory contents are maintained

• Ability to recover from powerdown in less than 100-400 CLKIN
cycles (the number of cycles depends on the processor used in your
system design; see the appropriate data sheet for information)

• Ability to disable internal oscillator when using crystal

• No need to shut down clock for lowest power when using external
oscillator

• Interrupt support for executing “housekeeping” code before enter-
ing powerdown and after recovering from powerdown

• User selectable powerup context
ADSP-218x DSP Hardware Reference 7-43

Powerdown
Even though the processor is put into the powerdown mode, the lowest
level of power consumption still might not be achieved if certain guide-
lines are not followed. Lowest possible power consumption requires no
additional current flow through processor output pins and no switching
activity on active input pins. Therefore, a careful analysis of pin loading in
your circuit is required. The following sections detail the proper power-
down procedure as well as provide guidelines for clock and output pin
connections required for optimum low-power performance.

Powerdown Control
You can control several parameters of powerdown operation through con-
trol bits in the SPORT1 Autobuffer/Powerdown Control Register

This control register is memory-mapped at location 0x3FEF and is shown
in Figure 7-10.

SPORT1 Autobuffer / Powerdown Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XTALDIS
XTAL Pin Drive Disable During Powerdown

1=disabled, 0=enabled
(XTAL pin should be disabled when

no external crystal is connected)

XTALDELAY

1=delay, 0=no delay
(Use delay to allow internal phase locked

loop or external oscillator to stabilize)

PDFORCE
Powerdown Force

1=force processor to vector to
powerdown interrupt

PUCR
Powerup Context Reset

1=soft reset (clear context)*,
0=resume execution

DM(0x3FEF)

Delay Startup From Powerdown 4096 Cycles

Figure 7-10. SPORT1 Autobuffer/Powerdown Control Register
7-44 ADSP-218x DSP Hardware Reference

System Interface
Entering Powerdown
The powerdown sequence is defined as follows.

1. Initiate the powerdown sequence by applying a high-to-low transi-
tion to the PWD pin or by setting the powerdown force control bit
(PDFORCE) in the SPORT1 Autobuffer/Powerdown Control Regis-
ter (followed by a NOP instruction).

2. The processor vectors to the non-maskable powerdown interrupt
vector at address 0x002C. (Note: The powerdown interrupt is
never masked. You must be careful not to cause multiple power-
down interrupts to occur or stack overflow may result. Multiple
powerdown interrupts can occur if the PWD input is pulsed while the
processor is already servicing the powerdown interrupt.)

3. Any number of housekeeping instructions, starting at location
0x002C, can be executed prior to the processor entering the power-
down mode. Typically, this section of code is used to configure the
powerdown state, disable on-chip peripherals and clear pending
interrupts.

4. The processor now enters powerdown mode when it executes an
IDLE instruction (while PWD is asserted). The processor may take
either one or two cycles to power down depending upon internal
clock states during the execution of the IDLE instruction. All regis-
ter and memory contents are maintained while in powerdown.
Also, all active outputs are held in whatever state they are in before
going into powerdown.

If an RTI is executed before the IDLE instruction, then the processor
returns from the powerdown interrupt and the powerdown sequence is
aborted.
ADSP-218x DSP Hardware Reference 7-45

Powerdown
While the processor is in the powerdown mode, the processor is in CMOS
standby. This allows the lowest level of power consumption where most
input pins are ignored. Active inputs need to be held at CMOS levels to
achieve lowest power. For more information, see “Processor Operation
During Powerdown” on page 7-51.

Exiting Powerdown
The powerdown mode can be exited with the use of the PWD pin or with
RESET. There are also several user-selectable modes for start-up from pow-
erdown which specify a start-up delay as well as specify the program flow
after start-up. This allows the program to resume from where it left off
before powerdown or for the program context to be cleared.

Ending Powerdown with the Powerdown Pin

Applying a low-to-high transition to the PWD pin will take the processor
out of powerdown mode. You have the option of selecting the amount of
time the processor takes to come out of the powerdown mode with the
“delay start-up from powerdown” control bit (XTALDELAY), bit 14 in the
Powerdown Control register. If this bit is cleared to 0, no additional delay
is introduced over the quick start-up (between 100 and 400 cycles, as
specified in the relevant ADSP-218x data sheet). If this bit is set to 1, a
delay of 4096 cycles is introduced. The delay feature is used depending
upon the state of an external clock oscillator at the time of powerup or if
the internal clock is disabled. For more information, see the sections,
“Systems Using an External TTL/CMOS Clock” on page 7-48 and
“Systems Using a Crystal and the Internal Oscillator” on page 7-49

You can also program one of two options directing the processor how to
resume operation. The context for exiting powerdown is set by bit 12
(PUCR, powerup context reset) of the Powerdown Control register.
7-46 ADSP-218x DSP Hardware Reference

System Interface
If the PUCR control bit is cleared to 0, the processor will continue to exe-
cute instructions following the IDLE instruction. For example, a
high-to-low transition is applied to the pin, which causes the processor to
vector to the powerdown interrupt routine. In this routine, a few house-
keeping tasks are performed and the IDLE instruction is executed. The
processor powers down. Some time later a low-to-high transition is
applied to the pin, causing the processor to exit powerdown mode. Since
the PUCR bit is 0, the processor resumes executing instructions in the pow-
erdown interrupt routine, starting at the instruction following the IDLE
instruction. When an RTI instruction is encountered, control then passes
back to the main routine.

If the PUCR bit is set to 1 for a clear context, the processor resumes opera-
tion from powerdown by clearing the PC, STATUS, LOOP and CNTR stacks.
The IMASK and ASTAT registers are set to 0 and the SSTAT goes to 0x55. The
processor will start executing instructions from address 0x0000.

Ending Powerdown with the RESET Pin

If RESET is asserted while the processor is in the powerdown mode, the
processor is reset and instructions are executed from address 0x0000. A
boot is performed if the MMAP pin is set to 0 for the ADSP-2181 and
ADSP-2183 processors or the MODE A and MODE B pins are set to 0 for all
other ADSP-218x processors.

If the RESET pin is used to exit powerdown, then it must be held low for
the appropriate number of cycles. If the clock is stopped at powerup or
operating at a different frequency at powerup than it was before power-
down, RESET must be held long enough for the oscillator to stabilize plus
an additional 1000 CLKIN cycles for the phase-locked loop to lock. The
time required for the oscillator to stabilize depends upon the type of crys-
tal used and capacitance of the external crystal circuit. Typically 2000
CLKIN cycles is adequate for clock stabilization time.
ADSP-218x DSP Hardware Reference 7-47

Powerdown
If the clock was not stopped at powerup and is at a stable frequency at
powerup (same as before powerdown), only 5 cycles of RESET are required.

When ending powerdown with RESET, the XTALDELAY (delay start-up from
powerdown) control bit is ignored.

Startup Time after Powerdown
The time required to exit the powerdown state depends on whether an
internal or external oscillator is used, and the method used to exit
powerdown.

Systems Using an External TTL/CMOS Clock

When the processor is in powerdown, the external clock signal is ignored
if the XTALDIS bit (XTAL pin disable) of the Powerdown Control register is
set to 1. It is therefore not necessary to stop the external clock since no
power is wasted while the external clock is running. If the external clock is
to be stopped anyway, it must be kept running for (at least) one additional
cycle after the IDLE instruction is executed.

The XTALDIS bit should always be set before entering powerdown. This
specifies that the XTAL pin is not to be driven by the processor. During
powerdown, there is no need to drive the XTAL pin when an external oscil-
lator is used. Disabling the XTAL pin drive during powerdown lets the
input clock run without wasting power.

After the processor is taken out of the powerdown mode by either the PWD
pin or RESET, it will begin executing instructions after a maximum start-up
time of between 100 and 400 CLKIN cycles (see the relevant ADSP-218x
data sheet for the correct specification) as long as the clock oscillator is sta-
ble and at the same frequency as before powerdown.
7-48 ADSP-218x DSP Hardware Reference

System Interface
If the external clock is unstable when the processor exits powerdown, then
the XTALDELAY control bit can be used. This allows time for the external
clock to stabilize by inserting an additional 4096-cycle delay before the
processor starts to execute instructions. The start-up delay can only be
used when the processor is taken out of powerdown mode with the PWD
pin.

If the processor is taken out of powerdown by RESET and the clock is stable
and at the same frequency as before powerdown, RESET needs to be held
for only 5 cycles.

Systems Using a Crystal and the Internal Oscillator

A trade-off can be made so that a fast start-up is possible, but power is
consumed by leaving the oscillator running during powerdown. If a fast
start-up is desired, then you must clear bits 14 (XTALDELAY) and
15 (XTALDIS) of the Powerdown Control Register to 0 before entering
powerdown. This selects no additional delay after start-up from power-
down and drives the external crystal during powerdown. In this
configuration, the oscillator will continue to operate and the processor
will start executing instructions in less than 100 or 400 cycles after the low
to high signal transition at the pin. (The number of cycles depends upon
the processor used in your system design; please see the appropriate data
sheet for specific timing information.) The XTAL pin will also be driven
and the powerdown power consumption will be higher than the 1 mW
specification. The following code example shows the powerdown interrupt
routine.

/* Sample Powerdown Code */
/* Located at interrupt vector address 0x002C */
 pwd_int: ax0 = 0x0000; /* enable crystal, no delay */
 dm(0x3FEF) = ax0;
 idle;
 rti;
ADSP-218x DSP Hardware Reference 7-49

Powerdown
If the lowest possible power consumption is required, then you must set
the XTALDELAY and XTALDIS bits to 1 before entering powerdown. This set-
ting does the following:

• Selects the additional 4096 cycle delay to allow the oscillator to start
and the phase locked loop to lock after start-up.

• Disables the drive to the XTAL pin during powerdown.

The following code example shows the powerdown interrupt routine.

* Sample Powerdown Code */
* Located at interrupt vector address 0x002C */
 pwd_int: ax0 = 0xC000; * disable crystal, delay */
 dm(0x3FEF) = ax0;
 idle;
 rti;

Depending on the particular situation and external system conditions, the
powerdown modes shown above could be set conditionally. If you want to
powerdown for a long time you may want to set the mode for lowest
power consumption. If you want to powerdown for a short time, lowest
power consumption may not be that important.

If the RESET pin is used to exit powerdown and the clock has been stopped,
then RESET must be held low for 1000 CLKIN cycles plus the time required
for the phase locked loop to lock and the crystal oscillator to stabilize (typ-
ically 2000 CLKIN cycles.) If the clock is running during powerdown, a
RESET signal of only 5 cycles is required.
7-50 ADSP-218x DSP Hardware Reference

System Interface
Processor Operation During Powerdown
Some processor circuitry may still be active during powerdown mode.
Also, some output pins remain active. A good understanding of these
states will allow you to determine the best low-power configuration for
your system. By keeping output loading and input switching to a mini-
mum the lowest possible power consumption can be achieved.

Interrupts and Flags

Interrupts are latched and can be serviced if the processor exits power-
down without a context reset (PUCR=1). Any activity on the interrupt or
flag input pins during powerdown will increase the power consumption.
There should also be no resistive load on the flag output pins (as with any
active output pin) if lowest power is desired.

SPORTs

The circuitry of the serial ports is not directly affected by powerdown. The
SPORTs are indirectly affected if an internally generated SCLK or frame
sync is required. SPORT circuitry continues to operate during
powerdown.

It is possible to clock data into or out of the serial ports during power-
down. You must supply an external serial clock to support operation
during powerdown. No interrupts or autobuffer operations will be ser-
viced during powerdown. Instead, the SPORT interrupts are latched and
can be serviced if the processor exits powerdown without resetting the
processor. Data clocked into the processor will remain in the receive (RX)
registers. Autobuffer transfers will occur after the device exits powerdown
if the processor is not powered up with RESET. Note that any SPORT
activity will increase the power consumption above the 1 mW
specification.
ADSP-218x DSP Hardware Reference 7-51

Powerdown
If an external serial clock and an external frame sync signal are supplied,
data can be clocked into the RX register or out of the TX register during
powerdown. Since the TX register can not be updated while the processor
is in powerdown, the same value is repeatedly clocked out the serial port.
Also, data in the RX register is continually overwritten since the RX register
can not be read by the processor during powerdown.

If an external serial clock is used with an internal frame sync, frame sync
signals continue to be generated during powerdown since they are derived
from the serial clock. Data bits continue to be received with the RX register
being overwritten. Since data is only transmitted when the TX register is
written, data bits are only transferred out of the processor if the processor
is put in powerdown during a serial port transfer. While the processor is
being put into powerdown, the serial port transfer in progress is allowed to
complete. Since an internally generated transmit frame sync is used, no
subsequent frame syncs are generated while in powerdown.

If internal serial clock is used, there is no SPORT activity during power-
down; the serial clock stops.

Lowest power dissipation is achieved when active SPORT pins are not
changing during powerdown and are held at CMOS levels.
7-52 ADSP-218x DSP Hardware Reference

System Interface
IDMA Port During Powerdown

The IDMA port can receive data during powerdown, but it can not
respond with an acknowledge (IACK) signal or increment the IDMA inter-
nal address. If you are using a short read or short write and are in the
middle of an IDMA transfer, you can complete a single read or write while
the processor is in powerdown. If you are using the long read or long write
method and are in the middle of an IDMA transfer, your host must be
able to handle a “timeout” condition, as the DSP will not return an
acknowledge to the transfer in process.

Note that IDMA activity while the DSP is in powerdown uses power and
should be avoided to conserve power. For more information on lowest
power use, see For more information, see “Conditions for Lowest Power
Consumption” on page 7-54.

BDMA Port During Powerdown

Do not powerdown the ADSP-218x processor during a BDMA transfer. If
you do, the DSP will not be able to recover correctly from powerdown
and the contents of memory accessed by the processor’s BDMA port will
be corrupted.

If you need to go into powerdown mode, either:

• Verify that the BWCOUNT register contains a zero. If a BDMA transfer
is in process, poll the BWCOUNT register to determine when the trans-
fer is done.

or

• Abort any BDMA transfer in progress by writing 1 to the BWCOUNT
register and go into powerdown when the BWCOUNT register contains
a zero. (Note that the BDMA transfer is not properly completed in
this case.)
ADSP-218x DSP Hardware Reference 7-53

Powerdown
Conditions for Lowest Power Consumption
The state of all processor pins during powerdown is shown in Table 7-10.

To assure the lowest power consumption, all active input pins should be
held at a CMOS level (to ground level, if possible). All active output pins
should be free of resistive load since load current will increase power dissi-
pation. You must perform a careful analysis of each input and output pin
in order to insure lowest power dissipation.

Some inputs are active but ignored. The state of these inputs does not
matter as long as they are at a CMOS level.

Table 7-10. Pin States During Powerdown

Pin Direction State During Powerdown

RESET I Active

PWD I Active

IRQ2 I Active, latched but not serviced

IRQE I Active, latched but not serviced

IRQL0 I Active, latched but not serviced

IRQL1 I Active, latched but not serviced

MMAP I Active

BR I Active, no response until after powerdown

BG O Driven HIGH unless bus is granted

CLKIN I Input buffer inactive, but XTAL oscillator is
active unless XTALDIS bit is set

CLKOUT O Driven HIGH
7-54 ADSP-218x DSP Hardware Reference

System Interface
XTAL O Driven HIGH if XTALDIS set, inversion of
CLKIN otherwise

PWDACK O Driven HIGH

PMS O Driven HIGH, high impedance if bus granted

DMS O Driven HIGH, high impedance if bus granted

BMS O Driven HIGH, high impedance if bus granted

IOMS O Driven HIGH, high impedance if bus granted

CMS O Driven HIGH, high impedance if bus granted

RD O Driven HIGH, high impedance if bus granted

WR O Driven HIGH, high impedance if bus granted

ADDR<13:0> O High impedance

DATA<23:0> I Inactive

DATA<23:0> O High impedance

SCLK0 I Active

SCLK0 O Driven to static level if internal, high impedance
otherwise

TFS0 I Active if SPORT 0 is enabled

TFS0 O Driven if configured internal or in multichannel
mode and SPORT 0 enabled, high impedance
otherwise

RFS0 I Active if SPORT 0 is enabled

Table 7-10. Pin States During Powerdown (Cont’d)

Pin Direction State During Powerdown
ADSP-218x DSP Hardware Reference 7-55

Powerdown
RFS0 O Driven if configured internal and SPORT 0
enabled, high impedance otherwise

DR0 I Active if SPORT 0 is enabled

DT0 O Driven if serial port operating. Output may be
static or changing depending upon serial clock,
high impedance otherwise

SCLK1 I Active

SCLK1 O Driven to a static level if internal, high imped-
ance otherwise

TFS1/IRQ1 I Active if SPORT 1 is enabled or configured alter-
nate (IRQ1)

TFS1 O Driven if SPORT 1 is enabled and configured for
internal transmit framing, high impedance other-
wise

RFS1/IRQ0 I Active if SPORT 1 is enabled or configured alter-
nate (IRQ0)

RFS1 O Driven if SPORT 1 is enabled and config-
ured for internal receive framing, high
impedance otherwise

DR1/FI I Active if SPORT 1 is enabled or configured alter-
nate (FI)

DT1/FO O Driven if serial port operating. Output may be
static or changing depending upon serial clock.
Driven if SPORT 1 is enabled or configured
alternate (FO)

FL<2:0> O Driven to previous value

Table 7-10. Pin States During Powerdown (Cont’d)

Pin Direction State During Powerdown
7-56 ADSP-218x DSP Hardware Reference

System Interface
PWDACK Pin
The powerdown acknowledge pin (PWDACK) is an output that indicates
when the processor is powered down. This pin is driven high by the pro-
cessor when it has powered down and is driven low when the processor has
completed its powerup sequence. A low level on the PWDACK pin also indi-
cates that there is a valid CLKOUT signal and that instruction execution has
begun. Figure 7-11 shows an example of timing for the powerdown and
restart sequence.

The processor is executing code when the PWD pin is brought low. The pro-
cessor vectors to the powerdown interrupt vector and an IDLE instruction
is executed causing the processor to go into powerdown. The CLKOUT and
PWDACK signals are driven high by the processor. At this point, the input
clock pin is ignored. If the processor is put into the powerdown mode via
the powerdown force bit in the powerdown control register, the result is
the same as described above.

PF<7:0> I/O Active

BMODE I Active

IRD I Active, if IS asserted

IWR I Active, if IS asserted

IS I Active

IAL I Active, if IS asserted

IAD I/O Active, if an operation in progress

IACK O Active

Table 7-10. Pin States During Powerdown (Cont’d)

Pin Direction State During Powerdown
ADSP-218x DSP Hardware Reference 7-57

Powerdown
The input clock is started and the PWD pin is brought high. After the neces-
sary start-up cycles the processor brings the PWDACK output low, begins
driving the CLKOUT pin with a clock signal and begins to fetch the instruc-
tion after the IDLE instruction. The processor then resumes normal
operation.

When powerdown is terminated with the RESET pin or if a start-up delay is
selected, a low level on the PWDACK pin only indicates the start of oscilla-
tions on the CLKOUT pin. It will not necessarily indicate the start of
instruction execution.

The state of PWDACK and also the CLKOUT signal is undefined during the first
100 cycles of initial reset.

RUN

CLKIN

CLKOUT

PWDACK

PWD

PWRDWN
PENDING

POWERED
DOWN

RUNSTART CLK

EXECUTE
IDLE

FINISH IDLE

NOP WHILE FETCHING INSTRUCTION FOLLOWING IDLE

Figure 7-11. Powerdown Timing Examples
7-58 ADSP-218x DSP Hardware Reference

System Interface
Using Powerdown as a Non-Maskable Interrupt
The powerdown interrupt is never masked. It is possible to use this inter-
rupt for other purposes if desired. The processor will not go into
powerdown until an IDLE instruction is executed. If an RTI is executed
before the IDLE instruction, then the processor returns from the power-
down interrupt and the powerdown sequence is aborted.

It is possible to place a series of instructions at the powerdown interrupt
vector location 0x002C. This routine should end with an RTI instruction
and not contain an IDLE instruction if the interrupt is to be used for pur-
poses other than powerdown.

Bus Request/Grant
This section describes the bus request and grant feature of the ADSP-218x
processors.

An ADSP-218x processors can relinquish control of data and address
buses to an external device. The external device requests the bus by assert-
ing (low) the bus request signal, BR. The BR signal is an asynchronous
input. If the ADSP-218x processor is not performing an external access, it
responds to the active BR input in the following processor cycle by:

1. Tristating the data and address buses and the xMS, RD, WR output
drivers,

2. Asserting the bus grant (BG) signal, and

3. Halting program execution (unless Go mode is enabled).

If Go mode is enabled, the ADSP-218x processor continues to execute
instructions from its internal memory. It will not halt program execution
until it encounters an instruction that requires an external access. (An
external access may be either a memory device access or a memory overlay
access, BDMA access, or I/O space access.)
ADSP-218x DSP Hardware Reference 7-59

Bus Request/Grant
If Go mode is not enabled, the ADSP-218x processor always halts before
granting the bus. The processor’s internal state is not affected by granting
the bus, and the serial ports remain active during a bus grant, whether or
not the processor core halts.

If the ADSP-218x processor is performing an external access when the BR
signal is asserted, it will not grant the buses until the cycle after the access
completes. The sequence of events is illustrated in Figure 7-12. The entire
instruction does not need to be completed when the bus is granted. If a
single instruction requires two external accesses, the bus will be granted
between the two accesses. The second access is performed after BR is
removed.

CLKOUT

BR

BG

BR

BG

If no memory access is in progress, BG is
asserted in the cycle after BR is recognized:

PMS

DMS
BMS

PMS

DMS

BMS

If a memory access is in progress, BG is asserted in
the cycle after the access is completed:

Figure 7-12. Bus Request (With or Without External Access)
7-60 ADSP-218x DSP Hardware Reference

System Interface
When the BR input is released, the ADSP-218x processor releases the BG
signal, reenables the output drivers and continues program execution from
the point where it stopped. BG is always deasserted in the same cycle that
the removal of BR is recognized. Refer to the data sheet for exact timing
relationships.

The bus request feature operates at all times, including when the processor
is booting and when RESET is active. During RESET, BG is asserted in the
same cycle that BR is recognized. During booting, the bus is granted after
completion of loading of the current byte (including any wait states).
Using bus request during booting is one way to bring the booting opera-
tion under control of a host computer.

The ADSP-218x processors also have a Bus Grant Hung (BGH) output,
which lets them operate in a multiprocessor system with a minimum num-
ber of wasted cycles. The BGH pin asserts when the ADSP-218x processor is
ready to execute an instruction but is stopped because the external bus is
granted to another device. The other device can release the bus by deas-
serting bus request. Once the bus is released, the ADSP-218x processor
deasserts BG and BGH and executes the external access.
ADSP-218x DSP Hardware Reference 7-61

Target System Hardware
Target System Hardware
This section provides target system hardware recommendations to assist
you in preventing problems with an EZ-ICE emulation system.

Target Board Connector for EZ-ICE Probe
The ADSP-218x processor has on-chip emulation support and an
ICE-port, which is comprised of a special set of pins that interface to the
EZ-ICE. By using only a 14-pin connection from the target system to the
EZ-ICE, this interface allows for in-circuit emulation without replacing
the target system processor. (This 14-pin connection is a standard,
0.100-inch on-center, pin-strip header. Target systems must have a 14-pin
connector to accept the EZ-ICE’s in-circuit probe, a 14-pin female plug.

Figure 7-13 shows the EZ-ICE connector (a standard pin strip header).
You must add this connector to your target board design if you intend to
use the EZ-ICE.

! Be sure to allow enough room in your system to fit the EZ-ICE
probe onto the 14-pin connector.
7-62 ADSP-218x DSP Hardware Reference

System Interface
The 14-pin, 2-row pin strip header is keyed at the Pin 7 location—you
must remove Pin 7 from the header. The pins must be 0.025 inches square
and at least 0.20 inches in length. Pin spacing should be 0.1 x 0.1 inches.
The pin strip header must have at least a 0.15 inch clearance on all sides to
accept the EZ-ICE probe plug.

! Pin strip headers are available from vendors such as 3M, McKenzie
(Framatome Connectors International), and Samtec, Inc.

The ICE-Port interface consists of the following ADSP-218x processor
pins: EBR, EINT, EE, EBG, ECLK, ERESET, ELIN, EMS, and ELOUT. These
ADSP-218x processor pins must be connected only to the EZ-ICE con-
nector in the target system. These pins have no function, other than
during emulation, and do not require pull-up or pull-down resistors. All
of the emulator signals become active once the Emulation Enable (EE) sig-
nal is driven high.

X

1 2

3 4

5 6

7 8

9 10

11 12

13 14

GND

KEY (NO P IN)

RESET

BR

BG

TOP VIEW

EBG

EBR

ELOUT

EE

EINT

ELIN

ECLK

EMS

ERESET

Figure 7-13. EZ-ICE Connector
ADSP-218x DSP Hardware Reference 7-63

Target System Hardware
! The traces for these signals between the ADSP-218x processor and
the connector must be kept as short as possible — no longer than 3
inches.

The following pins are also used by the EZ-ICE: BR, BG, RESET, and GND.

The EZ-ICE uses the EE signal to take control of the ADSP-218x proces-
sor in the target system. This causes the processor to use its ERESET, EBR,
and EBG pins instead of the RESET, BR, and BG pins. The BG output is
tri-stated.

! These signals do not need to be jumper-isolated in your system.

The EZ-ICE connects to your target system via a ribbon cable and a
14-pin female plug. The female plug is plugged onto the 14-pin connector
(a pin strip header) on the target board.

Using Mode Pins with RESET and ERESET Signals

Issuing the CHIP RESET command during emulation causes the DSP to
perform a full chip reset. The state of the Mode pins are latched upon the
rising edge of the RESET signal; this holds true when the DSP is reset in a
running system or when a CHIP RESET command is issued when in emula-
tion mode.

! Therefore, when using the EZ-ICE with a 100-pin ADSP-218x pro-
cessor, it is vital that the Mode pins are set correctly prior to issuing
a CHIP RESET command from the emulator user interface.

If you are using a passive method of maintaining mode information (as
discussed in “Active or Passive Mode Pin Configuration” on page 7-13),
then it does not matter that the mode information is latched by an emula-
tor reset. However, if you are using the RESET pin as a method of actively
setting the value of the Mode pins, then you need to take into consider-
ation the effects of an emulator reset.
7-64 ADSP-218x DSP Hardware Reference

System Interface
One method of ensuring that the values located on the Mode pins are
those desired is to construct a circuit like the one shown in Figure 7-14.
The circuit shown in this figure forces the value located on the Mode A pin
to a logic high, regardless of whether it is latched via the RESET or ERESET
pin. (To configure the Mode pin to a logic low, you could use a two-input
AND gate with the ERESET and RESET signals connected as inputs and the
output of the AND gate connected to the Mode pin. In this example, the
Mode pin would be driven to a logic low when either the RESET or the
ERESET signals go active low.)

Bus Request Signal
The Bus Request signal (BR) should be pulled high with a 10 kΩ resistor if it
is not being used in your system design. Failure to pull BR high may result in
the inability of EZ-ICE to fully initialize when connected to a target.
Since the microcontroller uses the Bus Request signal to communicate
with the DSP, it is critical that you do not leave BR floating, even if you are
not using it in your target.

E R E S E T

P R O G R A M M A B L E I/O

M O D E A /P F O

R E S E T

1 k�

A D S P -21 8X

Figure 7-14. EZ-ICE Circuit for ADSP218x Mode Pins
ADSP-218x DSP Hardware Reference 7-65

Target System Hardware
! When not using the emulator, the BR pin must be pulled high. If it
is not pulled high, either a hold-off condition could occur, which
can halt the DSP from booting either via BDMA or IDMA, or pro-
gram execution could halt indefinitely. Typical behavior for this
problem would be no activity on the BMS signal, or the IACK signal
staying inactive (high) indefinitely.

Memory Select Signals
All memory select signals should be pulled high for EZ-ICE emulator
compatibility.

You must connect a pull-up resistor (10 kΩ) on the memory select signals
(RD, WR, PMS, DMS, BMS, CMS, and IOMS) if they are used in your target system.
(For example, you would use these signals when accessing external mem-
ory or memory-mapped peripheral devices.) Pull-up resistors are needed
since there are no internal pull-ups to guarantee the memory select signal’s
state during prolonged tri-stated conditions, which result from typical
EZ-ICE debugging sessions. Because the EZ-ICE uses the DSP’s bus to
communicate with Program Memory (PM), Data Memory (DM), Boot
Memory (BM), Input Output Memory (IOM), and Emulator Memory
Space, pull-up resistors must be used.

Decoupling Capacitors
0.1 µF decoupling capacitors should be placed (as close to the DSP as pos-
sible) on all VDD pins connected to the same digital ground.

During clock and data transitions, when all signal pins switch simulta-
neously, decoupling capacitors provide a localized source DC voltage and
current for optimal operation of the DSP. Decoupling capacitors also
ensures that there is a low-impedance power source present in power
planes and circuit traces. They effectively remove high frequencies from
the signal trace while not affecting lower frequencies.
7-66 ADSP-218x DSP Hardware Reference

System Interface
All other digital integrated circuit chips in your system should be decou-
pled to manufacturers recommendations.

Also, a 100 µF bypass capacitor can be placed at the rails of the power
supply coming into the target board to filter unwanted RF noise from the
power supply cable.

RESET Signal
Due to the high operating speeds of RC circuits, using them to delay the
deassertion of the RESET signal at powerup is not recommended for
ADSP-218x processor systems. During powerup, RESET must be held low
for a minimum of 2000 DSP CLKIN cycles to ensure proper phase-lock
loop of the internal processor clock. Achieving proper phase-lock loop
ensures that the CLKOUT signal phase-locks with the CLKIN signal.

A Schmitt Trigger (or some type of hysteresis circuitry) should be used on
the reset line to minimize “ringing” on the RESET signal or to allow for
mechanical debouncing of a push button or switch. A clean RESET signal
that is free from ringing or glitches guarantees proper DSP powerup and
initialization. Without a Schmitt Trigger, the RESET signal may oscillate or
ring before settling to a valid inactive (high) level. Ringing on the RESET
signal may cause the DSP to lock up, since the RESET signal may fall below
the VIH minimum voltage specification. When the signal falls below this
minimum, a faulty reset that does not meet the 2000 CLKIN cycle mini-
mum DSP specification can occur.

PCB Board
Whenever possible, target systems should consist of a multilayered PCB
board with a separate power and ground plane stacked in the middle layers
of the board. Wirewrapped boards are not generally recommended as they
are more susceptible to external noise and parasitic capacitance.
ADSP-218x DSP Hardware Reference 7-67

Target System Hardware
EZ-ICE Powerup Procedure
The ADSP-218x EZ-ICE communicates with a host PC over an RS232
serial cable. Connect the ADSP-218x EZ-ICE board to the selected COM
port of the PC (COM1 or COM2) using the attached RS232 serial cable
of the emulator.

Below is the recommended powerup sequence when using the emulator to
debug your target system:

1. Power up the ADSP-218x EZ-ICE by using the supplied power
adapter. Also, power up your target system.

2. Using the provided ground cable, attach one end of the ground
cable to the emulator probe at reference location TP1. Attach the
other end of the ground cable to a proper ground on your target
system.

3. Attach the emulator probe to your target board’s 14-pin emulator
header.

4. Invoke the emulator software.

! Reverse this procedure for removing the ADSP-218x EZ-Ice from
your target system.

Other Considerations
When designing a target system, keep the following in mind:

• EZ-ICE emulation introduces an up to 15 pF load on the RESET and
BR signals. See the ADSP-218x Family Hardware Installation Guide
for more details.

• EZ-ICE emulation introduces an up to 15 pF load on the BG signal.
In some modes the EZ-ICE drives the BG signal. See the ADSP-218x
Family Hardware Installation Guide for more details.
7-68 ADSP-218x DSP Hardware Reference

System Interface
• EZ-ICE emulation ignores RESET and BR when single-stepping.

• EZ-ICE emulation ignores RESET and BR when in Emulator Space
(DSP Halted).

• EZ-ICE emulation ignores the state of the target BR in certain
modes. As a result, the target system may take control of the DSP’s
external memory bus only if bus grant (BG) is asserted by the EZ-ICE
board’s DSP.

• EZ-ICE emulation introduces a 500 µs latency between transitions
to User Space and some signal responses. This latency occurs when
you start (or resume) running your DSP program. The latency is the
time between resumption of code execution and the EZ-ICE board
allowing the DSP to respond to RESET and BR.

Recommended Reading
The text High-Speed Digital Design: A Handbook of Black Magic is recom-
mended for further reading. This book is a technical reference that covers
the problems encountered in state-of-the-art, high-frequency digital cir-
cuit design, and is an excellent source of information and practical ideas.
Topics covered in the book include:

• High-Speed Properties of Logic Gates

• Measurement Techniques

• Transmission Lines

• Ground Planes & Layer Stacking

• Terminations

• Vias

• Power Systems
ADSP-218x DSP Hardware Reference 7-69

Target System Hardware
• Connectors

• Ribbon Cables

• Clock Distribution

• Clock Oscillators

Reference: Johnson & Graham, High-Speed Digital Design: A Handbook of
Black Magic, Prentice Hall, Inc., ISBN 0-13-395724-1
7-70 ADSP-218x DSP Hardware Reference

8 MEMORY INTERFACE
Figure 8-0.

Table 8-0.

Listing 8-0.
Overview
The ADSP-218x family of processors has a modified Harvard architecture
in which data memory stores data and program memory stores both
instructions and data. A program instruction or opcode can be fetched
from internal memory and executed. In the same clock cycle, two data ele-
ments can be accessed from internal memory: one from Data Memory and
the other from Program Memory.

Program Memory and Data Memory
Each ADSP-218x family processor contains on-chip RAM, which allows a
portion of the Program Memory space and a portion of the Data memory
space to reside on-chip. External Program Memory and external Data
Memory can also be used in a system design. 16 K words total of external
Program Memory (24-bits) and 16 K words total of external Data Mem-
ory (16-bits) can be addressed as 8 K overlay memory segments.
ADSP-218x DSP Hardware Reference 8-1

Overview
Byte Memory Space
Each processor has a 4 M addressable byte-wide memory space (Byte
Memory space). This space can be used for the following:

• Loading on-chip program memory with code from an external
EPROM at reset

• Bulk code or data storage during runtime

• Software overlays when a program’s code size exceeds the amount of
on-chip memory on the processor

I/O Memory Space
The ADSP-218x processors support I/O Memory space. This space is a
16-bit, 2048 location that allows for the memory mapping of external
peripherals or other processors to the ADSP-218x processor. External
memory select signals are associated with each of these external memory
spaces.

Memory Buses
In each ADSP-218x family processor, memory is connected to the internal
functional units by four on-chip buses: the Data Memory Address (DMA)
bus, Data Memory Data (DMD) bus, Program Memory Address (PMA)
bus and Program Memory Data (PMD) bus. The internal PMA bus and
DMA bus are multiplexed into a single address bus that is extended
off-chip. Likewise, the internal PMD bus and DMD bus are multiplexed
into a single external data bus. The sixteen MSBs of the external data bus
are used as the DMD bus: external bus lines D23-8 are used for DMD15-0.
8-2 ADSP-218x DSP Hardware Reference

Memory Interface
External Memory Spaces
There are four separate external memory spaces: Data Memory, Program
Memory, Byte Memory, and I/O Memory. To provide external access to
these memory spaces, the ADSP-218x processors extend the 14-bit inter-
nal address bus and 24-bit data bus off-chip and provide the PMS, DMS, BMS,
and IOMS select lines. The PMS, DMS, BMS, and IOMS signals indicate which
memory space is being accessed.

Because the Program Memory and Data Memory buses are multiplexed
off-chip, if more than one external transfer must be made in the same
instruction, an overhead cycle will be required. An overhead cycle is not
required if just one off-chip access (with no wait states) occurs in any
instruction.

All external memories may have automatic wait state generation associated
with them. The number of wait states—each equal to one instruction
cycle—is programmable.

Composite Memory Select
The Composite Memory Select (and its CMS select line) lets a single
off-chip memory be accessed as multiple memory spaces. The Composite
Memory Select register lets you define which memory spaces are selected
by the CMS signal. By using this register, you can assign the CMS signal to
become active on any combination of Program Memory, Data Memory,
Byte Memory, or I/O Memory external memory accesses.

External Overlay Memory
External Program Memory and external Data Memory can be addressed as
8 K overlay memory segments (pages). These overlay segments are mapped
to addresses 0x2000-0x3fff for Program Memory overlay regions and
0x0000-0x1fff for Data Memory overlay regions.
ADSP-218x DSP Hardware Reference 8-3

Overview
Internal Direct Memory Access Port
The Internal Direct Memory Access (IDMA) port is a 16-bit slave port
that supports booting from an external host processor. This port also
allows the host runtime access to all of the internal memory contents
(both internal Program Memory and Data Memory) of the DSP—except
for the memory-mapped control registers, which reside at the uppermost
32 locations of internal Data Memory. The DMA feature of this port lets
you define the number of memory locations the DSP transfers to or from
internal memory in the background while continuing foreground
processing.

Memory Modes
The IDMA port is a separate port on the ADSP-2181 and ADSP-2183
processors and a configured port on all other ADSP-218x processors. For
all of the ADSP-218x family processors, except for the ADSP-2181 and
ADSP-2183, the external address and data pins are multiplexed with the
IDMA address/data bus and control signals. The functionality of these
multiplexed pins is determined at reset by external Mode pins. The value
of these Mode pins determine whether the 100-pin ADSP-218x processors
have access to the full 14-bit address bus and 24-bit data bus (Full Mem-
ory Mode) or if the processor has IDMA functionality (Host Memory
Mode) with a single address bit (A0) and a 16-bit data bus (D[23:8]).

The pin multiplexing design enables processors to use a smaller number of
pins, which results in a smaller package size. This reduced size helps save
board “real estate” in board size-critical applications. On the other hand,
this reduced size requires a more complex design in order to use both the
external address and data busses simultaneously with IDMA port
functionality.
8-4 ADSP-218x DSP Hardware Reference

Memory Interface
Memory Interfaces
In the modified Harvard architecture used by ADSP-218x processors, Pro-
gram Memory stores both instructions and 24-bit or 16-bit data values;
Data Memory stores 16-bit data values only. The amount of on-chip
memory differs for each processor. Table 8-1 identifies the amount of
on-chip memory contained in each processor.

Figures 8-1 through 8-6 show the on-chip Program Memory and Data
Memory configurations and their address mappings for each of the
ADSP-218x family processors.

Table 8-1. ADSP-218x Processor Base On-Chip Memory

Processor Program Memory Data Memory

ADSP-2181 16 K by 24-bit words 16 K by 16-bit words

ADSP-2183 16 K by 24-bit words 16 K by 16-bit words

ADSP-2184, ADSP-2184L and
ADSP-2184N

4 K by 24-bit words 4 K by 16-bit words

ADSP-2185, ADSP-2185L,
ADSP-2185M, and ADSP-2185N

16 K by 24-bit words 16 K by 16-bit words

ADSP-2186, ADSP-2186L,
ADSP-2186M, and ADSP-2186N

8 K by 24-bit words 8 K by 16-bit words

ADSP-2187L and ADSP-2187N 32 K by 24-bit words 32 K by 16-bit words

ADSP-2188M and ADSP-2188N 48 K by 24-bit words 56 K by 16-bit words

ADSP-2189M and ADSP-2189N 32 K by 24-bit words 48 K by 16-bit words
ADSP-218x DSP Hardware Reference 8-5

Memory Interfaces
Program Memory

PM Overlay 0
(Internal P M)

PM Overlay 1,2
(External PM)

0x3FFF

0x2000

Internal PM

0x1FFF

0x0000

0x3FE0

0x3FDF

Data M em ory

DM Overlay 0
(Internal DM)

DM Overlay 1,2
(External DM)

Internal DM

32-M em ory-M apped
Control Registers

Figure 8-1. ADSP-2181, ADSP-2183, and ADSP-2185 Memory Archi-
tecture (MMAP=0 for ADSP-2181 and ADSP-2183, and Mode B=0 for
ADSP-2185)

Program Memory

PM Overlay 1,2
(External PM)

0x3FFF

0x2000

Internal PM 0x0FFF

0x0000

0x3FE0
0x3FDF

Data Memory

DM Overlay 1,2
(External DM)

Internal DM

32-Memory-Mapped
Control Registers

4064 Reserved Words

Internal PM Reserved

Internal DM Reserved

Reserved

0x3000

0x2FFF

0x1000

Figure 8-2. ADSP-2184 Memory Architecture (Mode B=0)
8-6 ADSP-218x DSP Hardware Reference

Memory Interface
Program Memory

0x3FFF

0x2000

0x0000

0x3FE0
0x3FDF

Data Memory

DM Overlay 1,2
(External DM)

Internal DM

32-Memory-Mapped
Control Registers

Internal DM Reserved

0x1FFF

PM Overlay 1,2
(External PM)

Internal PM

Internal PM Reserved

Figure 8-3. ADSP-2186 Memory Architecture (Mode B=0)

Program Memory

0x3FFF

0x2000

0x0000

0x3FE0
0x3FDF

Data Memory

DM Overlay 0,4,5
(Internal DM)

DM Overlay 1,2
(External DM

Internal DM

32-Memory-Mapped
Control Registers

0x1FFF

PM Overlay 0,4,5
(Internal PM)

PM Overlay 1,2
(External PM)

Internal PM

Figure 8-4. ADSP-2187 Memory Architecture (Mode B=0)
ADSP-218x DSP Hardware Reference 8-7

Memory Interfaces
Program Memory

0x3FFF

0x2000

0x0000

0x3FE0
0x3FDF

Data Memory

DM Overlay 0,4,5,6,7,8
(Internal DM)

DM Overlay 1,2
(External DM)

Internal DM

32-Memory-Mapped
Control Registers

0x1FFF

PM Overlay 0,4,5,6,7
(Internal PM)

PM Overlay 1,2
(External PM)

Internal PM

Figure 8-5. ADSP-2188 Memory Architecture (Mode B=0)

Program Memory

0x3FFF

0x2000

0x0000

0x3FE0
0x3FDF

Data Memory

DM Overlay 0,4,5,6,7
(Internal DM)

DM Overlay 1,2
(External DM)

Internal DM

32-Memory-Mapped
Control Registers

0x1FFF

PM Overlay 0,4,5
(Internal PM)

PM Overlay 1,2
(External PM)

Internal PM

Figure 8-6. ADSP-2189 Memory Architecture (Mode B=0)
8-8 ADSP-218x DSP Hardware Reference

Memory Interface
These memory maps show how the internal memory is configured for each
of the ADSP-218x family processors. Since the ADSP-2184 and
ADSP-2186 processors have less than 16 K words of Program Memory
and Data Memory, some of their internal memory locations are reserved
and should not be used in the Linker Description File (LDF) or accessed
at runtime in the executable program. Please note that all external mem-
ory locations map to Program Memory and Data Memory overlay pages 1
and 2.

Program Memory Interface
The ADSP-218x family Program Memory is 24-bits wide. Up to two
accesses to internal Program Memory can be completed per instruction
cycle. Instruction read accesses are done on the first half of the clock cycle,
and data reads and writes are done on the second half of the clock cycle.

The Program Memory Address bus is 14 bits in length. This length allows
the ADSP-218x processors to directly access 16 K of internal Program
Memory. For processors with more than 16 K internal Program Memory,
the additional memory regions are accessed or selected as 8 K Program
Memory overlay segments, using a Program Memory Overlay register
(PMOVLAY). This register acts as a program memory page select.

All of the ADSP-218x family processors can also access up to 16 K of
external Program Memory. External Program Memory is also selected by
using the Program Memory Overlay register. Only one overlay region can
be active at a time; this restriction applies to both internal and external
overlay regions.
ADSP-218x DSP Hardware Reference 8-9

Memory Interfaces
The PWAIT field of the System Control register sets the number of wait
states for each access to external Program Memory overlays. The value of
the PWAIT bit field of the System Control register defaults to fifteen after
reset for all ADSP-218x M and N series processors. Bit 15 of the System
Control register for these ADSP-218x M and N series processors defaults
to 1, which assigns twice the value of the PWAIT bit field plus one (2N+1)
wait states. The PWAIT bit field defaults to seven after reset for all other
ADSP-218x processors.

For all ADSP-218x processors, Program Memory Overlay regions 1 and 2
correspond to external Program Memory overlay regions, each 8 K in
length. All other overlay regions are internal overlays, except for Overlay
region 3, which is reserved. External Program Memory overlays are
selected by using the Program Memory Overlay register (PMOVLAY). Only
one Program Memory overlay region can be active at a time; this restric-
tion applies to both internal and external Program Memory overlay
regions.

! Internal Program Memory overlay regions do not apply to the
ADSP-2184 and ADSP-2186 processors.

When accessing external Program Memory overlay pages, the PMOVLAY reg-
ister controls or determines the value of the address pin A13. When the
PMOVLAY register equals 1, the value of A13 is zero. When the PMOVLAY reg-
ister equals two, the value of address pin A13 is 1. Table 8-2 explains the
operational behavior of the PMOVLAY register and address pin A13 when
using external Program Memory overlay pages.
8-10 ADSP-218x DSP Hardware Reference

Memory Interface
The on-chip Program Memory and internal and external Program Mem-
ory overlay regions can hold both instructions and data intermixed in any
combination. By assigning the memory architecture description in the
Linker Description File, a programmer can specify absolute address place-
ment for any code or data module, including code for the interrupt vector
table and reset vector. The reset vector is located at Program Memory
address 0x0000. In conjunction with the Linker Description File, the
ADSP-218x processor linker determines where to place relocatable code
and data segments.

All of the Program Memory overlay regions map from address location
PM(0x2000) to PM(0x3FFF). The value of the Program Memory Overlay
register (PMOVLAY), determines which overlay region is currently being
accessed and whether an internal or an external PM overlay region is being
accessed by the DSP core.

Table 8-2. PMOVLAY and Program Memory Overlay Addressing

PMOVLAY Memory A13 A12:0

0,4,5,6,7 Internal 8 K Region N/A N/A

1 External 8 K Overlay 1 0 13 LSBs of address between
0x2000 and 0x3FFF

2 External 8 K Overlay 2 1 13 LSBs of address between
0x2000 and 0x3FFF
ADSP-218x DSP Hardware Reference 8-11

Memory Interfaces
! ADSP-218x processors’ program sequencer operates independently
from the PMOVLAY register. The program sequencer only operates on
the absolute address of the current instruction it is executing. For
Program Memory, the overlay regions map to the address range
0x2000 – 0x3fff. Special care must be taken by the programmer to
ensure that the proper target address and overlay are accessed when
making jumps or calls in the program.

Also, the DAG registers operate independently of the PMOVLAY reg-
ister. Again, special care must be taken to ensure the proper target
Program Memory region is being accessed when performing register
indirect jump or call instructions or when performing serial port
autobuffering to Program Memory overlay regions.

Data Memory Interface
The Data Memory of the ADSP-218x family processors is 16-bits wide.
Similar to the internal Program Memory of these processors, up to two
accesses to internal Data Memory can be completed per instruction cycle.
Memory read accesses are done on the first half of the clock cycle and
memory writes are done on the second half of the clock cycle.

The Data Memory Address bus is 14 bits in length; the ADSP-218x pro-
cessor can directly access 16 K of internal Data Memory. For processors
with more than 16 K of internal Data Memory, the additional memory
regions are accessed or selected as 8 K Data Memory overlay segments
using a Data Memory Overlay (DMOVLAY) register. This register acts as a
Data Memory page select.
8-12 ADSP-218x DSP Hardware Reference

Memory Interface
For all ADSP-218x processors, Data Memory Overlay regions 1 and 2 cor-
respond to external Data Memory overlay regions, each 8 K in length. All
other overlay regions are internal overlays, except for Overlay 3, which is
reserved. External Data Memory overlays are selected by using the Data
Memory Overlay register (DMOVLAY). Only one Data Memory overlay
region can be active at a time; this restriction applies to both internal and
external Data Memory overlay regions.

! Internal Data Memory overlay regions do not apply to the
ADSP-2184 and ADSP-2186 processors.

The DWAIT field of the Wait State Control register sets the number of wait
states for each access to external Data Memory overlays. The value of the
DWAIT bit field of the System Control register defaults to seven after reset
for all ADSP-218x M and N series processors, but the total number of
wait states is fifteen for these processors. Bit 15 of the Wait State Control
register for these ADSP-218x M and N series processors defaults to 1,
which assigns twice the value of the DWAIT bit field plus one (2N+1) wait
states. The DWAIT bit field defaults to seven after reset for all other
ADSP-218x processors.

The on-chip Data Memory and internal and external Data Memory over-
lay regions can be used to store data. By assigning the memory
architecture description in your Linker Description File, you can specify
absolute address placement for any data segment. In conjunction with
your Linker Description File, the ADSP-218x linker determines where to
place relocatable data segments.
ADSP-218x DSP Hardware Reference 8-13

Memory Interfaces
When accessing external Data Memory overlay pages, the DMOVLAY register
controls or determines the value of the address pin A13. When the DMOVLAY
register equals 1, the value of A13 is 0. When the DMOVLAY register equals 2,
the value of address pin A13 is 1. Table 8-3 explains the operational behav-
ior of the DMOVLAY register and address pin A13 when using external Data
Memory overlay pages.

All of the Data Memory overlay regions map from address location
DM(0x0000) to DM(0x1FFF). The value of the Data Memory Overlay regis-
ter (DMOVLAY) determines which overlay region is currently being accessed
and whether an internal or an external DM overlay region is being
accessed by the DSP core.

! Since the DMOVLAY register works independently from the program
sequencer and DAGs, special care must be taken by the programmer
to ensure that the proper target memory location is accessed. For
example, the programmer should take care when switching between
Data Memory Overlay regions while serial port autobuffering is
active. On a positive note, this switching could allow the program-
mer to configure the serial port autobuffering mechanism to operate
in “ping-pong” fashion when switching between overlay memory
regions.

Table 8-3. DMOVLAY and Data Memory Overlay Addressing

DMOVLAY Memory A13 A12:0

0,4,5,6,7,8 Internal 8 K Region NA NA

1 External 8 K Overlay 1 0 13 LSBs of address between
0x0000 and 0x1FFF

2 External 8 K Overlay 2 1 13 LSBs of address between
0x0000 and 0x1FFF
8-14 ADSP-218x DSP Hardware Reference

Memory Interface
Listing 8-1 provides example instructions that demonstrate how to use the
DMOVLAY register.

Listing 8-1. DMOVLAY Register Example

DMOVLAY=DM(0x1234); /* type 3 instruction, DMOVLAY is loaded
with the contents of address
DM(0x1234) */

DMOVLAY=2; /* type 7 instruction, DMOVLAY is loaded
with the value 2. */

DMOVLAY=AX0; /* DMOVLAY is loaded from AX0 register. */
AX0=DMOVLAY; /* AX0 is loaded from DMOVLAY register. */

Byte Memory Interface
The ADSP-218x processor’s Byte Memory space is 8 bits wide and can
address up to 4M bytes of program code or data. The ADSP-218x proces-
sor can boot through this interface, as well as performing read and write
accesses to an 8-bit memory device via the BDMA port during runtime.
The external signal BMS is active during Byte Memory accesses.

Each read or write to Byte Memory consists of data (which is driven on
data bus lines D[15:8]) and address information (driven on address lines
A[13:0], concatenated with data lines D[23:16]). This gives the BDMA
port a total of 22 bits of addressing, which allows you to access up to 4M
byte of ROM or RAM. This memory can be read from or written to in
four different formats: 24-bit code, 16-bit data, 8-bit data MSB aligned,
or 8-bit data LSB aligned. For 8-bit MSB aligned accesses, the LSBs are
zero padded during byte memory reads. For 8-bit LSB aligned accesses,
the MSBs are zero padded during byte memory reads.

Wait states for Byte Memory accesses are programmable via the BMWAIT bit
field of the Programmable Flag and Composite Memory Select Control
register. For the ADSP-218x M and N series processors, the default setting
for BMWAIT is fifteen after reset. For all other ADSP-218x processors, the
default setting is seven after reset.
ADSP-218x DSP Hardware Reference 8-15

Memory Interfaces
For more information on the ADSP-218x processor’s Byte Memory and
BDMA port, please refer to the “BDMA Port” section in Chapter 9,
“DMA Ports”.

I/O Memory Space
The ADSP-218x family processors have a dedicated 16-bit wide I/O
Memory space consisting of 2048 locations. This dedicated memory space
allows you to memory map peripherals using this space rather than using
external Program Memory and/or external Data Memory addressing and
resources to interface with external devices.

There are four programmable wait state regions that are associated with
I/O Memory space. The Wait State Control register contains the
IOWAIT0:3 bit fields that control the four I/O Memory wait state regions,
consisting of 512 locations each.

For the ADSP-218x M and N series processors, the default setting for
IOWAIT is 15 after reset. For all other ADSP-218x processors, the default
setting is 7 after reset. Figure 8-7 shows the Wait State Control register
and the IOWAIT0:3 fields that control I/O Memory wait state regions for
the ADSP-218x M and N series processors. Figure 8-8 shows the same
information for all other ADSP-218x processors.

IOWAIT0IOWAIT1IOWAIT2IOWAIT3DWAIT

DM(0X3FFE)

Wait State Mode Select
0 = normal mode (PWAIT, D WAIT, IOWAIT0-3 = N wait states, ranging from 0 to 7)
1= 2N+1 mode (PW AIT, DWAIT, IOWAIT0-3 = 2N+1 wait states, ranging from 0 to 15)

W ait State Control

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 11 1 1 11 1 1 1 1 1 1 1

(ADSP-218x M and N Series Processors)

Figure 8-7. Wait State Control Register (ADSP-218x M and N Series)
8-16 ADSP-218x DSP Hardware Reference

Memory Interface
The Wait State Control register is divided into the following fields:

• IOWAIT0—This 3-bit field sets the number of wait states (0-7) for
accesses to I/O Memory addresses 0x000-0x1ff.

• IOWAIT1—This 3-bit field sets the number of wait states (0-7) for
accesses to I/O Memory addresses 0x200-0x3ff.

• IOWAIT2—This 3-bit field sets the number of wait states (0-7) for
accesses to I/O Memory addresses 0x300-0x4ff.

• IOWAIT3—This 3-bit field sets the number of wait states (0-7) for
accesses to I/O Memory addresses 0x400-0x5ff.

! For the ADSP-218x M and N series processors, bit 15 of the Wait
State Control register operates as a Wait State Mode Select bit.
When set, this bit configures the external I/O memory accesses to a
“2N+1” wait state mode. This 2N+1 wait state mode also applies for
external Program Memory and Data Memory accesses via the DWAIT
field of the Wait State Control register and the PWAIT field of the
System Control register.

IOWAIT0IOWAIT1IOWAIT2IOWAIT3DWAIT

DM(0x3FFE)

Bit 15 is unused
and should be
set to 0.

Wait State Control

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 11 1 1 10 1 1 1 1 1 1 1

(All ADSP-218x Processors except ADSP-218x M and N Series)

Figure 8-8. Wait State Control Register (All ADSP-218x Processors except
M and N Series)
ADSP-218x DSP Hardware Reference 8-17

Memory Interfaces
The following assembly instructions are examples of how I/O memory
locations can be accessed during run time:

ax0 = 0x1234; /* write a value to ax0 register */
IO(0x1ff) = ax0; /* I/O Memory write */

ay1 = IO(ASIC_Host); /* Read data value from I/O Memory Mapped
ASIC */

" Since I/O Memory space is a separate, dedicated memory space, the
address mapping for I/O Memory space is not included as informa-
tion in your Linker Description File. The only method of assigning
(and accessing) I/O Memory in your system is during runtime in
your assembly code. (I/O Memory space is not directly supported
by the C Runtime Environment.)

Because of this restriction, in order to guarantee proper system per-
formance, the programmer and system designer must take special
care to ensure that the correct address mapping is performed both
in hardware and in software.

Composite Memory Select
The ADSP-218x family processors have a programmable memory select
signal, Composite Memory Select (CMS). This signal lets you generate a
memory select for devices mapped to more than one memory space, with
the same timing as the other individual memory select signals (PMS, DMS,
BMS, and IOMS).
8-18 ADSP-218x DSP Hardware Reference

Memory Interface
Based on the value of the CMSSEL bit field (bits 11:8) in the Composite
Select Control register (see Figure 8-9), the ADSP-218x processor asserts
CMS when the corresponding memory select signal(s), PMS, DMS, BMS, and
IOMS, are asserted. The CMS signal can be enabled to become active for any
of these signals individually. By default after reset, the CMSSEL field is ini-
tialized to enable the CMS signal to become active for any PMS, DMS, or IOMS
memory access. (BMS is disabled.)

Figure 8-10 and Figure 8-11 in the next sections provide two examples for
using the CMS signal in system designs.

1 = Enable CM S

CMSSEL

0 = Disable CM S

DM(0x3FE6)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMBMIOM PM

Composite Select Control

1 0 1 1

Figure 8-9. CMSSEL Selection for CMS Signal
ADSP-218x DSP Hardware Reference 8-19

Memory Interfaces
CMS Signal as Chip Select for 32 K x 8-Bit SRAMs

Figure 8-10 provides an example of using the CMS signal as a chip select for
three 32 K x 8-bit SRAMs with no glue logic. The purpose of this chip
select is to implement two pairs of 8 K external overlay regions: two for
Program Memory and two for Data Memory.

D[0:7] D[0 :7] D[0 :7]
D[16:23]

D[8:15]

D[0:7]

A[0:13]

A[0:13] A[0:13]
A[0:13]

A[14] A[14]
A[14]

CSCM S

PM S

32K X 8 32K X 832K X 8

ADSP-218X

OE

WE

RD

WR

CS

OE

WE

CS

OE

WE

Figure 8-10. Example Using CMS Signal as a Chip Select
8-20 ADSP-218x DSP Hardware Reference

Memory Interface
In this example, the CMS signal is configured to trigger for both Program
Memory and Data Memory accesses (when the PMS or DMS signals are
active). The PMS signal is used as the upper order address line (A[14]) to
the SRAMs. When the DSP performs Program Memory accesses, the PMS
signal becomes active (low), causing the A14 address line of the SRAMs to
be driven low. When the DSP performs Data Memory accesses, the PMS
signal becomes inactive, causing the A14 address line of the SRAMs to be
driven high.

The main advantage of this implementation is that only three 32 K x 8-bit
SRAMs are required for this configuration. Normally, five 16 K x 8-bit
SRAMs are required to implement two pairs of 8 K overlay regions for
Program Memory and Data Memory. This implementation helps to save
on board “real estate” where board space is limited.

BMS Disable

For the following ADSP-218x models, there is a disable BMS control bit
(bit 3 of the System Control register) that allows the processor core to
enable or disable the BMS signal during Byte Memory accesses:

• ADSP-2184, ADSP-2184L and ADSP-2184N

• ADSP-2185L, ADSP-2185M, and ADSP-2185N

• ADSP-2186, ADSP-2186L, ADSP-2186M, and ADSP-2186N

• ADSP-2187L and ADSP-2187N

• ADSP-2188M and ADSP-2188N

• ADSP-2189M and ADSP-2189N

When BMS is disabled, it can be used with the CMS signal to allow the map-
ping of multiple memory devices to the Byte Memory space. Figure 8-11
provides an example of this use of the BMS and CMS signals.
ADSP-218x DSP Hardware Reference 8-21

Memory Interfaces
In this example, the DSP is booted from an EPROM. By default after
reset, the BMS signal is enabled for Byte Memory accesses. After the DSP
has been booted and initialized during runtime, the system program can
disable the BMS signal and also enable the CMS signal to trigger during BMS
accesses. This process allows the CMS signal to chip select the FLASH or
SRAM memory during runtime while leaving the BMS signal disabled.
Leaving the BMS signal disabled prevents any contention between the two
devices.

D[16:23]

D[0:7] D[0:7]/

/

8

8

A[0:13]

A[0:22] A[0:22]

CS CS

CM S

BM S

EPROM FLASH or SRAM

ADSP-218X

OERD

WR

OE

WE

D[8:15]

Figure 8-11. Example Using CMS Signal to Chip Select FLASH or SRAM
Memory
8-22 ADSP-218x DSP Hardware Reference

Memory Interface
Memory Interface Modes
All ADSP-218x family processors, except for the ADSP-2181 and
ADSP-2183, are available in a 100-lead LQFP package. The ADSP-218x

processors in 100-lead LQFP packages can be used in one of two modes;
Full Memory Mode or Host Memory Mode. Full Memory Mode allows
complete operation of the external 24-bit data and 14-bit address busses
with full external overlay memory and I/O capability. Host Memory
Mode allows complete IDMA functionality with limited external address-
ing capabilities. The operating mode is determined by the state of the
Mode C pin only during the rising edge of the RESET signal. The operating
mode cannot be changed while the processor is running.

Full Memory Mode
In Full Memory Mode, the ADSP-218x processors in 100-lead LQFP
packages have complete use of the external address and data busses. In this
mode, the processors behave in exactly the same manner as the
ADSP-2181 and ADSP-2183 processor with the IDMA port removed.

The processors have a 24-bit external data bus, a 14-bit address bus and 5
memory select signals. Byte memory is accessed for data by using the mid-
dle eight bits of the data bus. The upper eight bits of the data bus
combined with the 14 address pins provide a 22 bit address for Byte Mem-
ory space. All of these features behave exactly the same as they do on the
ADSP-2181 and ADSP-2183. Hold Off cases (autobuffer cycle stealing,
external memory accesses with wait states, and so forth) are simplified
because an IDMA transfer never occurs. In this mode, the IDMA port is
disabled as if IS was deselected or pulled high on the ADSP-2181 or
ADSP-2183 processors.
ADSP-218x DSP Hardware Reference 8-23

Memory Interface Modes
Host Memory Mode
Host Memory Mode allows complete IDMA port operation with limited
external addressing capabilities. It gives full use of the IDMA port as
found on the ADSP-2181 and ADSP-2183 processors, but there are limi-
tations on the use of the external memory bus. In Host Memory Mode the
lower eight bits of the data bus, D[7:0], become IDMA control pins and
IAD bus pins. The upper 13 bits of the address bus A[13:1] become the
lower 13 bits of the IDMA address/data bus IAD[12:0]. IDMA transfers
occur exactly as they do on the ADSP-2181 and ADSP-2183 processors.

Accessing Peripherals

The external bus in Host Memory Mode still remains available in a lim-
ited form. The processors’ address pins A[13:1] are changed to IAD[12:0]
when the Mode C pin is high. As a result, the chip cannot drive an address
externally. However, internally, the chip behaves as if external accesses are
occurring. The external bus behaves in the same way as an ADSP-2181 or
ADSP-2183 system where address bits A[13:1] and data bits D[7:0] are
ignored. The upper 16 bits of the data bus can still be used for external
data transfers, but only one address bit is available, A0.

Writes to Data Memory or I/O Memory space activate the appropriate
memory select(s), RD or WR, place data on D[23:8], and drive a single
address bit on A0. Program Memory reads and writes behave similarly but
have the added consideration of the PX register.

For Program Memory reads and writes, only the upper 16 bits will be
available externally. When 24-bit data is written to external Program
Memory, the upper 16 bits are driven out on data bus pins [23:16]. The
PX register still latches the lower eight bits of the program memory word,
but these bits are not driven externally. If a 24-bit read of external mem-
ory occurs, no external pins control the value of the PX register, and the PX
register is written with all 1s.
8-24 ADSP-218x DSP Hardware Reference

Memory Interface
The missing address bits restrict using the external bus with a conven-
tional memory device, which has separated address and data buses. These
external transfers might be usable with shared address/data memory chips,
or they can be used for communication with an ASIC. The memory selects
will still be active, so each memory space is effectively collapsed into two
external addresses, address 0 and 1. Clever use of the CMS pin allows a user
to decode 8 external addresses of 16-bit words using A0, IOMS, DMS, PMS and
CMS. More addresses can also be provided by using the DSP’s Flag Out
pins as a memory select for a peripheral. Table 8-4 provides some possible
16-bit peripheral addresses for a total of 8 devices.

Byte Memory Accesses

BDMA accesses are still allowed in Host Memory Mode. However,
because address pins A[13:1] became the IAD bus, construction of a com-
plete byte address is impossible without the use of external address
generators or latches, since only a single address bit (A[0]) is available.

Byte Memory addresses on the ADSP-2181 and ADSP-2183 processors
are 22-bit addresses formed from D[23:16] and A[13:0]. In Host Memory
Mode D[23:16] and A0 are the only address bits available externally.
D[23:16] will be in the DMPAGE register value. A0 will be 1 for odd byte
addresses and 0 for even byte addresses.

Table 8-4. Possible 16-Bit Peripheral Addresses

Memory Select A0 (0 or 1)

PMS 2 address locations

DMS 2 address locations

IOMS 2 address locations

CMS 2 address locations
ADSP-218x DSP Hardware Reference 8-25

Memory Interface Modes
BDMA and IDMA timing and cycle stealing are the same as on the
ADSP-2181 and ADSP-2183 processors. BDMA with limited address bits
available still provides a flexible interface to the DSP. Without full address
bits, addressing memory will be more difficult. However, host or micro-
controller communication is possible because the order of the byte
sequence is known.

Memory Interface Pins
Table 8-5 provides a description of Full Memory Mode pins, and
Table 8-6 provides a description of Host Memory Mode pins on
ADSP-218x processors in 100-lead LQFP packages.

Table 8-5. Full Memory Mode Pins (Mode C=0)

Pin Name Number
of Pins

I/O Function

A13:0 14 O Address Output Pins for Program, Data, Byte
and I/O spaces

D23:0 24 I/O Data I/O Pins for Program, Data, Byte and I/O
spaces (8 MSBs are also used as Byte Memory
addresses) Note: For 16-bit accesses, use pins
23:8

Table 8-6. Host Memory Mode Pins (Mode C=1)

Pin Name Number
of Pins

I/O Function

IAD15:0 16 I/O IDMA Port Address/Data bus

A0 1 O Address Pin for External I/O, Program, Data, or

Byte access1
8-26 ADSP-218x DSP Hardware Reference

Memory Interface
D23:8 16 I/O Data I/O Pins for Program, Data Byte and I/O
spaces

IWR 1 I IDMA Write Enable

IRD 1 I IDMA Read Enable

IAL 1 I IDMA Address Latch Pin

IS 1 I IDMA Select

IACK 1 O IDMA Port Acknowledge Configurable in
Mode D; Open Drain

1 In Host Memory Mode, external peripheral addresses can be decoded using the A0, CMS, PMS,
DMS, and IOMS signals.

Table 8-6. Host Memory Mode Pins (Mode C=1) (Cont’d)

Pin Name Number
of Pins

I/O Function
ADSP-218x DSP Hardware Reference 8-27

Memory Interface Modes
8-28 ADSP-218x DSP Hardware Reference

9 DMA PORTS
Figure 9-0.

Table 9-0.

Listing 9-0.
Overview
The ADSP-218x processors include the following DMA interfaces:

• Byte Memory Space and Byte Memory DMA (BDMA) — The
byte memory space can address up to 4M bytes. The BDMA inter-
face supports booting from and runtime access to inexpensive 8-bit
memories. The BDMA feature lets you define the number of mem-
ory locations the BDMA interface transfers to or from internal
memory in the background while the ADSP-218x DSP core contin-
ues processing in the foreground.

• Internal Direct Memory Access (IDMA) Port —This 16-bit wide
parallel port supports booting from and runtime access to host sys-
tems (for example, PC Bus Interface ASICs). The DMA feature of
this port lets you transfer data to/from internal memory in the back-
ground while continuing foreground processing.

These DMA transfers are accomplished internally by “cycle stealing,” in
the same way as serial port autobuffering. This means that the ADSP-218x
processor uses internal bus cycles to transfer the data to and from memory.
The stolen cycles only occur at instruction cycle boundaries — not
between cycles of a multiple-cycle instruction. See “DMA Cycle Stealing,
Hold Offs, and IACK Acknowledge” on page 9-47 for additional details.
ADSP-218x DSP Hardware Reference 9-1

BDMA Port
BDMA Port
Byte memory provides access to an 8-bit wide memory space through the
BDMA port. The byte memory space provides access to 4 Mbytes of
memory by utilizing 8 data lines as additional address lines. This gives the
BDMA port an effective 22-bit address range. Figure 9-1 shows the
ADSP-218x processor interface to BDMA.

Byte memory space consists of 256 pages, each containing 16 K x 8-bit
wide locations. This memory can be written and read in four different for-
mats: 24-bit, 16-bit, 8-bit MSB alignment, and 8-bit LSB alignment.

ADSP-218X Byte Mem ory
(4 M x8)

BMS

RD

8

22

14

8

WR

D[16:23]

A[0:13]

D[8:15]

CS

OE

WE

A[0:21]

D[0:7]

Figure 9-1. ADSP-218x Processor BDMA Port Interface
9-2 ADSP-218x DSP Hardware Reference

DMA Ports
On powerup, the ADSP-218x processor can automatically load bootstrap
code from byte memory. To use byte memory for purposes other than
boot loading, such as runtime access to bulk data storage, you must know
the following:

• 22-bit address that the code/data starts (BMPAGE, BEAD)

• Number of words (BWCOUNT) to read or write

• Word format (BTYPE) of the data

A BDMA transfer (non-boot loading) begins when data is written to the
BWCOUNT register and completes when the BWCOUNT register decrements to
zero. When the register reaches zero, a BDMA interrupt is issued.

There are no restrictions to the byte address alignment for BDMA
accesses. The upper 8 bits of the address are from BMPAGE and the lower 14
bits are from BEAD. As the BDMA controller accesses memory, it automat-
ically increments BMPAGE at page boundaries. Data or code can cross
BMPAGE boundaries without a problem.

The following restrictions apply to BDMA transfers:

• The BDMA Internal Address register (BIAD) lets you set the 14-bit
internal starting address for the BDMA transfer.

!To access the internal Program Memory and Data Memory Overlay
regions for the ADSP-2187L, ADSP-2188M, and ADSP-2189M
processors via BDMA, the BIAD register should be set to
0x2000-0x3fff for Program Memory Overlay regions and
0x0000-0x1fff for Data Memory Overlay regions.The
BDMA Overlay bit field (bits 7:4 of the BDMA Control register)
and the BTYPE field (bits 1:0 of the BDMA Control register) should
also be set for the appropriate overlay regions.

• The BEAD or BIAD registers should not be accessed during BDMA
transfers.
ADSP-218x DSP Hardware Reference 9-3

BDMA Port
• Other external memory accesses (PM Overlay, DM Overlay, or I/O
space) take precedence over BDMA port accesses. These accesses
cannot occur at the same time because they also use the processor’s
external bus. (See “Priority Chain” on page 9-49 for more informa-
tion.)

• Powerdown mode should not be entered with the BDMA port
active. (See “Powerdown” in Chapter 7, “System Interface” for
more information on powerdown restrictions.)

BDMA Port Functional Description
The BDMA port lets you load or store program instructions and data
from or to byte memory with very low processor overhead. While the
ADSP-218x processor is executing program instructions, the BDMA port
reads or writes code or data from or to byte memory—stealing one
ADSP-218x processor cycle per word when it needs to write to or read
from internal memory. You can calculate BDMA transfer time from the
following formula:

 1
Cycle for
 Internal
 RD/WR

Number
 of PM
 or DM
Words

 Number
 of Bytes
per Word

 Number
 of Added
Wait States
 per Byte

Hold
Offs

+ ++

 1
 Cycle
 for
Transfer
9-4 ADSP-218x DSP Hardware Reference

DMA Ports
If, for example, you wanted to transfer one hundred 24-bit program mem-
ory words through the BDMA port, assuming five wait states and no hold
offs, the operation would take 1900 cycles. This is shown in the following
equation:

Hold offs for DMA transfers are defined in the section, “DMA Cycle
Stealing, Hold Offs, and IACK Acknowledge” on page 9-47.

BDMA Control Registers
Memory-mapped registers are used to set up and control transfers through
the BDMA port. Figures 9-2 through 9-7 show these registers.

The BDMA Internal Address register (BIAD) lets you set the 14-bit inter-
nal starting address for the BDMA transfer. To access the internal
Program Memory and Data Memory Overlay regions for all the
ADSP-2187, ADSP-2188, and ADSP-2189 processors via BDMA, the
BIAD register should be set to 0x2000-0x3fff for Program Memory Overlay
regions and 0x0000-0x1fff for Data Memory Overlay regions. The BDMA
Overlay bit field (bits 7:4 of the BDMA Control register) and the BTYPE
field (bits 1:0 of the BDMA Control register) should also be set for the
appropriate overlay regions.

 1
Cycle for
 Internal
 RD/WR

 100
 PM
 Words

 3
 Bytes
per Word

 5
 Added
Wait States
 per Byte

 0
Hold
Offs

+ ++

 1
 Cycle
 for
Transfer
ADSP-218x DSP Hardware Reference 9-5

BDMA Port
The BDMA Internal Address register (BIAD) lets you set the 14-bit inter-
nal starting address for the BDMA transfer (see Figure 9-2). To access the
internal Program Memory and Data Memory Overlay regions for all the
ADSP-2187, ADSP-2188, and ADSP-2189 processors via BDMA, the
BIAD register should be set to 0x2000-0x3fff for Program Memory Overlay
regions and 0x0000-0x1fff for Data Memory Overlay regions. The BDMA
Overlay (BMOVLAY) field (bits 7:4 of the BDMA Control register) and the
BTYPE field (bits 1:0 of the BDMA Control register) should also be set for
the appropriate overlay regions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 00 0 0 0 0 0 0 0 0 0 0 0 0

BDM A Internal Address

DM (0x3FE1)

BIAD

Note: Bits 14 and 15 a re unused
and should be set to 0.

Figure 9-2. BDMA Internal Address Register
9-6 ADSP-218x DSP Hardware Reference

DMA Ports
The BDMA External Address register (BEAD) lets you set the 14-bit exter-
nal memory starting address for a BDMA transfer (see Figure 9-3). This
register value represents the value of the address bits A[13:0], which are
driven on the external address bus to your byte-wide device.

The BDMA port can access up to 4M bytes of information by using 22
bits of external addressing. These 22 bits are comprised of the following:

• Address bits 13:0, which correspond to the value of the BEAD register

• Address bits 21:14, which constitute the BMPAGE field (bits 15:8 of
the BDMA Control register)

Table 9-1 lists the values driven onto the external bus for BDMA
addressing.

Table 9-1. BDMA External Addresses

BDMA address DSP Pins Used BDMA Register Field

A21:A14 D23:D16 BDMA Control register bits 15:8 (BMPAGE)

A13:A0 A13:A0 BDMA External Address (BEAD) bits 13:8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 00 0 0 0 0 0 0 0 0 0 0 0 0

BDM A External Address

DM (0x3FE2)

BEAD

Note: Bits 14 and 15 are unused
and should be set to 0.

Figure 9-3. BDMA External Address Register
ADSP-218x DSP Hardware Reference 9-7

BDMA Port
! BDMA transfers that cross BDMA page boundaries update the
BMPAGE field of the BDMA Control register automatically.

BDMA Overlay bits (bits 7:4 of the BDMA Control register, shown in
Figure 9-4) apply only to the ADSP-2187, ADSP-2188, and ADSP-2189
processors. These bits must be set to zero for all other ADSP-218x proces-
sors (see Figure 9-5).

15 1 4 13 12 11 10 9 7 5 3 1

BMPAG E

BDMA Control

DM(0x3FE3)

BDIR

0 = load from BM
1 = store to BM

BCR

0 = run during BDM A
1 = halt during BDMA,

Context Reset when done

BTYPE (See table)

BTYPE 00 01 10 11

Internal M emory Space PM DM DM DM

Word Size 24 16 8 8

Alignment Full Full MSB LSB
 word word

8 6 4 2 0

BMOVLAY

(ADSP-2187 , ADSP-2188, and ADSP-2189)

0 0 000 00 0 0 00 0 0 0 0

Figure 9-4. BDMA Control Register (ADSP-2187, ADSP-2188, and
ADSP-2189)
9-8 ADSP-218x DSP Hardware Reference

DMA Ports
The BDMA Control register lets you set:

• BDMA Transfer Type (BTYPE)

• BDMA Direction (BDIR)

• BDMA Context Reset (BCR)

• Internal Overlay pages to be accessed by the BDMA transfer (applies
to the ADSP-2187, ADSP-2188, and ADSP-2189 processors only)

• BDMA Page (BMPAGE)

15 1 4 13 12 11 10 9 7 5 3 1

BMPAG E

BDMA Control

DM(0x3FE3)

BDIR

0 = load from BM
1 = store to BM

BCR

0 = run during BDM A
1 = halt during BDMA,

Context Reset when done

BTYPE (See table)

BTYPE 00 01 10 11

Internal M emory Space PM DM DM DM

Word Size 24 16 8 8

Alignment Full Full MSB LSB
 word word

8 6 4 2 0

(All ADSP-218x Processors except ADSP-2187, ADSP-2188, and ADSP-2189)

000000000000000

Figure 9-5. BDMA Control Register (All ADSP-218x Processors except
the ADSP-2187, ADSP-2188, and ADSP-2189)
ADSP-218x DSP Hardware Reference 9-9

BDMA Port
BTYPE can be:

• 00 24-bit Program Memory Words

• 01 16-bit Data Memory

• 10 8-bit bytes for Data Memory, MSB alignment

• 10 8-bit bytes for Data Memory, LSB alignment

BDIR can be:

• 0 from Byte Memory

• 1 to Byte Memory

BCR can be set to:

• 0 Allows program execution during BDMA

• 1 Inhibits program execution during BDMA transfers and
causes a context reset after transfer is complete

BMPAGE lets you select the starting page for BDMA transfer.

! Rebooting with BDMA Context Reset (BCR=1) is similar to a Pow-
erup Context Reset. For more details on processor states during
reset and reboot, see Chapter 7, “System Interface” in this manual.

The BWCOUNT register (shown in Figure 9-6) lets you start a BDMA transfer
by writing the number of words for the transfer to this register. The count
automatically decrements as the transfer proceeds. When the count is zero
(i.e. transfer complete), the processor issues a BDMA interrupt. When
MMAP and BMODE (ADSP-2181 and ADSP-2183 processors) or Mode B (all
other processors) are set to zero on boot, a value of 32 (decimal) is written
to this register directing the ADSP-218x processor to load the first 32
locations of its internal program memory.
9-10 ADSP-218x DSP Hardware Reference

DMA Ports
0 0 0 0 0 0 0 0 0 0 00 0 0 00

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

D M (0 x 3 F E 4)

B D M A W o rd C o u n t

 M M A P = 0 a n d B M O D E = 0 (A D S P -2 1 8 1 a n d A D S P -2 1 8 3 o n ly)

B W C O U N T

B W C O U N T

o r

D M (0 x 3 F E 4)

M O D E B = 0 (A ll o th e r A D S P -2 1 8 x p ro c e s s o rs)

 M M A P = 1 o r B M O D E = 1 (A D S P -2 1 8 1 a n d A D S P -2 1 8 3 o n ly)

M O D E B = 1 (A ll o th e r A D S P -2 1 8 x p ro c e s s o rs)

N o te : B its 1 4 a n d 1 5 a re u n u s e d
a n d s h o u ld b e s e t to 0 .

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 00 0 1 00

Figure 9-6. BDMA Word Count Register
ADSP-218x DSP Hardware Reference 9-11

BDMA Port
Two useful control techniques using this register are:

• Poll the BWCOUNT register to determine when the DMA transfer is
complete (BWCOUNT=0) instead of waiting for the BDMA interrupt.
The following code example illustrates this technique:

Poll_BWCOUNT:

ax0 = dm(0x3fe4); /* read value of BDMA count
register */

ar = pass ax0; /* pass count value through
ALU */

if eq jump BDMA_done; /* if count value = 0 then BDMA is
complete */

jump Poll_BWCOUNT; /* else continue polling the BDMA
count register */

• Abort the DMA operation by writing a 1 to the BWCOUNT register and
poll to determine when the transfer is complete (BWCOUNT=0) instead
of waiting for the BDMA interrupt. (Note that the DMA transfer is
aborted and cannot be resumed later.)

!Writing a zero to the BWCOUNT register results in 16 K words
transferred.

BMWAIT consists of bits 12, 13, and 14 of the Composite Select Control
register for all ADSP-218x processors except the M and N series (see
Figure 9-7). For the M and N series processors, this field consists of bits
12, 13, 14, and 15 of the Composite Select Control register (see
Figure 9-8). BMWAIT lets you select 0-7 wait states (each equal to a single
instruction cycle) to apply to each byte memory access. BMWAIT is set to 7
after a reboot.
9-12 ADSP-218x DSP Hardware Reference

DMA Ports
0 1 1 1

BMWAIT

Composite Select Control

DM(0x3FE6)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(All ADSP-218x Processors except the M and N Series)

Figure 9-7. BMWAIT Field in Composite Select Control Register (All
ADSP-218x Processors except the M and N Series)

BMWAIT

Composite Select Control

DM(0x3FE6)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1

(ADSP-218x M and N Series Processors)

Figure 9-8. BMWAIT Field in Composite Select Control Register
(ADSP-218x M and N Series)
ADSP-218x DSP Hardware Reference 9-13

BDMA Port
Byte Memory Word Formats
In your byte memory ROM or RAM, data is stored by the ADSP-218x
PROM Splitter according to the data format you select: 24-bit program
memory words, 16-bit data memory words, 8-bit data memory bytes with
MSB-alignment, or 8-bit data memory bytes with LSB-alignment. The
byte order for 24-bit program memory words and 16-bit data memory
words stored in byte memory is most-significant-byte in the lower address.
Table 9-1 shows an example of byte memory storage for all four code/data
formats.

! BDMA transfers to/from internal memory are written to/stored
from 16-bit wide locations. When transferring either of the data
memory byte formats, the unused byte of Data Memory is
zero-filled.

Table 9-2. Byte Memory Storage Formats

BTYPE Internal
Memory
Address

Internal Memory
Contents

Byte Memory
Address
(page 0x00)

Byte Memory
Contents

00 PM(0x0000) 0xABCDEF BM(0x0000)

BM(0x0001)

BM(0x0002)

0xAB

0xCD

0xEF

00 PM(0x0001) 0x123456 BM(0x0003)

BM(0x0004)

BM(0x0005)

0x12

0x34

0x56

01 DM(0x0000) 0x9876 BM(0x0006)

BM(0x0007)

0x98

0x76

01 DM(0x0001) 0x3456 BM(0x0008)

BM(0x0009)

0x34

0x56
9-14 ADSP-218x DSP Hardware Reference

DMA Ports
BDMA Booting
The ADSP-218x processor offers two methods for automatic booting after
reset: BDMA booting and IDMA booting. This section describes BDMA
booting. For information about IDMA booting, see “Boot Loading
through the IDMA Port” on page 9-46.

When using BDMA booting, the entire on-chip program memory of an
ADSP-218x processor, or any portion of it, can be loaded from an external
source using a byte memory booting sequence. Table 9-3 shows how to
select the post-reset booting method using the MMAP and BMODE pins on the
ADSP-2181 and ADSP-2183 processors. Table 9-4 on page 9-16 shows
how to select the post-reset booting method using the Mode D, Mode C,
Mode B, and Mode A pins on all other processors.

! The Mode D pin is not available on the ADSP-2184, ADSP-2184L,
ADSP-2185, ADSP-2185L, ADSP-2186, and ADSP-2186L proces-
sors.

10 DM(0x0002) 0x9800 BM(0x000A) 0x98

10 DM(0x0003) 0x7600 BM(0x000B) 0x76

11 DM(0x0004) 0x0034 BM(0x000C) 0x34

11 DM(0x0005) 0x0056 BM(0x000D) 0x56

Table 9-2. Byte Memory Storage Formats

BTYPE Internal
Memory
Address

Internal Memory
Contents

Byte Memory
Address
(page 0x00)

Byte Memory
Contents
ADSP-218x DSP Hardware Reference 9-15

BDMA Port
Table 9-3. Booting Methods for the ADSP-2181 and ADSP-2183
Processors

MMAP BMODE Booting Method

0 0 Boot through BDMA port. Boot sequence loads the first 32 pro-
gram memory words from the byte memory space. After all 32
words are loaded, program execution begins at internal address
PM(0x0000) with a BDMA interrupt pending.

0 1 Boot through IDMA port. Boot sequence holds off execution
while the host processor loads Program Memory using writes
through the IDMA port. Program execution begins when internal
address PM(0x0000) is loaded.

1 – No Booting. Boot sequence does not load memory or hold off
execution. Program execution starts at external address
PM(0x0000). The PMOVLAY register must be cleared (to zero).

Table 9-4. Booting Methods for All Processors Except the ADSP-2181 and
ADSP-2183 Processors

Mode D 1 Mode C Mode B Mode A Booting Method

X 0 0 0 BDMA feature is used to load the first
32 program memory words from the
byte memory space. Program execution
is held off until all 32 words have been
loaded. Chip is configured in Full
Memory Mode.2

X 0 1 0 No Automatic boot operations occur.
Program execution starts at external
memory location 0. Chip is configured
in Full Memory Mode. BDMA can still
be used but the processor does not
automatically use or wait for these
operations.
9-16 ADSP-218x DSP Hardware Reference

DMA Ports
0 1 0 0 BDMA feature is used to load the first
32 program memory words from the
byte memory space. Program execution
is held off until all 32 words have been
loaded. Chip is configured in Host
Mode. IACK has active pulldown.

Note: Requires additional hardware.

0 1 0 1 IDMA feature is used to load any inter-
nal memory as desired. Program execu-
tion is held off until internal program
memory location 0 is written to. Chip
is configured in Host Mode. IACK has
active pulldown.2

1 1 0 0 BDMA feature is used to load the first
32 program memory words from the
byte memory space. Program execution
is held off until all 32 words have been
loaded. Chip is configured in Host
Mode; IACK requires external
pull-down.

Note: Requires additional hardware.

1 1 0 1 IDMA feature is used to load any inter-
nal memory, as desired. Program execu-
tion is held off until internal program
memory location 0 is written to. Chip
is configured in Host Mode. IACK
requires external pulldown.

1 Mode D pin is not available on the ADSP-2184, ADSP-2184L, ADSP-2185, ADSP-2185L, AD-
SP-2186, or ADSP-2186L processors.

2 Considered as standard operating settings. Using these configurations allows for easier design and
better memory management.

Table 9-4. Booting Methods for All Processors Except the ADSP-2181 and
ADSP-2183 Processors (Cont’d)

Mode D 1 Mode C Mode B Mode A Booting Method
ADSP-218x DSP Hardware Reference 9-17

BDMA Port
The ADSP-218x processors use a BDMA boot sequence after reset when
the BMODE and MMAP pins equal 0 (ADSP-2181 and ADSP-2183 processors)
or the Mode B pin equals 0 (all other ADSP-218x processors).

The BDMA port is initialized for booting as follows:

• BWCOUNT is set to 32

• BDIR, BMPAGE, BEAD, BIAD, and BTYPE are set to zero

• BCR is set to 1

• BMWAIT is set to 15 for the ADSP-218x M and N series processors
and 7 for all other ADSP-218x processors

• BMOVLAY is set to 0 for the ADSP-2187, ADSP-2188, and
ADSP-2189 processors

These initializations configure the BDMA port to load 32 Program Mem-
ory words (96 bytes) (as specified by the BWCOUNT register) from Byte
Memory Page zero (as specified in the BMPAGE field of the BDMA Control
Register) and Byte Memory Address zero (as specified in the BEAD regis-
ter) to internal Program Memory address zero (as specified in the BIAD
register), using 24-bit Program Memory Word Format (as specified in the
BTYPE field of the BDMA Control register).

When set to 1, the BDMA context reset bit (BCR) inhibits program execu-
tion during BDMA transfer and causes execution to begin at address
PM(0x0000) after the transfer is completed. For the ADSP-218x M and N
series processors, the number of wait states (BMWAIT bits [15:12] of the
Composite Select Control register) for BDMA accesses is set to the maxi-
mum of 15. For all other ADSP-218x processors, the number of wait
states (BMWAIT bits [14:12] of the Composite Select Control register) for
BDMA accesses is set to the maximum value of 7. After the boot sequence
is complete (32 words transferred), program execution begins at internal
PM address 0x0000.
9-18 ADSP-218x DSP Hardware Reference

DMA Ports
The ADSP-218x PROM Splitter utility provides a boot loader option for
ADSP-218x processor-based designs. See “Development Software Features
for BDMA Booting” on page 9-20 for information.

If you are developing your own boot-loading software for ADSP-218x
processors, however, you should note that the BDMA Context Reset bit
(BCR) is set to 1 (inhibiting program execution during BDMA transfer)
and a BDMA interrupt is pending (signalling the first 32 word were sent)
after the boot sequence is complete. Your program will have to process the
interrupt (if you unmask the BDMA interrupt with the IMASK register) or
clear the interrupt (with the IFC register).

In an alternate method, using the BDMA interrupt without context clear,
a loader program could suspend program execution with the IDLE instruc-
tion while BDMA boot loading. If the loader sets the PM boot-load
parameters, the loader enables only the BDMA interrupt in the IMASK reg-
ister, and then executes an IDLE instruction. The IDLE instruction
suspends program execution until the BDMA interrupt occurs. At that
point all of program memory is loaded.
ADSP-218x DSP Hardware Reference 9-19

BDMA Port
Development Software Features for BDMA Booting

The ADSP-218x PROM Splitter utility lets you create BDMA
boot-loader programs for ADSP-218x processor-based designs. This pro-
vides a low overhead method for BDMA boot-loading your program. The
boot loader program attaches memory loader code to the beginning of
your executable program. The PROM Splitter generates loader code that
initializes up to 6 pages of program memory and 4 pages of data memory,
where each page is 16 K bytes in size. Typically, the code generated by the
PROM Splitter is burned into an EPROM and used as the ADSP-218x’s
Byte Memory space.

When the BMODE and MMAP pins equal 0 (ADSP-2181 and ADSP-2183 pro-
cessors) or the Mode B pin equals 0 (all other ADSP-218x processors), the
ADSP-218x processors loads the first 32 program memory words from the
Byte memory space and then begins execution. The loader routine is in
those first 32 words; it continues to load from the BDMA port until your
whole program is loaded.

! For complete information on the PROM Splitter features, see the
Linker & Utilities Manual for ADSP-218x & ADSP-219x Family
DSPs and the software release notes.
9-20 ADSP-218x DSP Hardware Reference

DMA Ports
IDMA Port
The IDMA port is a separate port on the ADSP-2181 and ADSP-2183
processors and a configured port on all other ADSP-218x processors when
they are in Host Mode (Mode C pin equals 1). It is a 16-bit parallel slave
I/O port that allows the processor’s internal memory to be read or written
by a host system. Figure 9-9 shows the ADSP-218x interface to the IDMA
port.

The IDMA port is a gateway to all internal memory locations on the DSP
(except for the processor’s memory-mapped control registers). The IDMA
port is made up of 16 multiplexed data/address pins and 5 control pins. It
provides transparent, direct access to the DSP’s on-chip program and data
RAM. IDMA port read/write access is completely asynchronous and a
host can access the DSP’s internal memory while the ADSP-218x proces-
sor is operating at full speed.

ADSP-218x Host Processor

/

16

IS

IAL I/O FLAG PIN

MEMORY SELECT

IRD

IAD[0:15]

IWR

IACK

RD

WR

ACKNOWLED GE

D[0:15]

Figure 9-9. ADSP-218x Processor IDMA Port Interface
ADSP-218x DSP Hardware Reference 9-21

IDMA Port
The IDMA port does not require any ADSP-218x processor intervention
to maintain data flow. The host system can access the ADSP-218x proces-
sor’s internal memory directly, without going through a set of mailbox
registers. Direct access to DSP memory increases throughput for block
data transfers. Through the IDMA port, internal memory accesses can be
performed with an overhead of one DSP processor cycle per word.

The ADSP-218x processor supports boot loading through the IDMA
port, through the BDMA port, or from an external Program Memory
Overlay. The MMAP and BMODE pins (ADSP-2181 and ADSP-2183 proces-
sors) or Mode B pin (all other processors) select the DSP’s boot mode and
memory map. Setting BMODE=1 and MMAP=0 (ADSP-2181 and ADSP-2183
processors) or Mode A=1 and Mode C=1 (all other ADSP-218x processors)
directs the ADSP-218x to boot through the IDMA port. For information
on IDMA booting, see “Boot Loading through the IDMA Port” on
page 9-46.

! The IDMA port cannot be used to read or write the ADSP-218x’s
memory-mapped control registers. For more information, see
“Modifying Control Registers for IDMA” on page 9-31.

IDMA Port Pin Summary
Table 9-5 identifies and describes the IDMA port pins.

Table 9-5. IDMA Port Pins

Pin Name(s) Input/
Output

Function

IRD I IDMA Port Read Strobe

IWR I IDMA Port Write Strobe

IS I IDMA Port Select

IAL I IDMA Port Address Latch Enable
9-22 ADSP-218x DSP Hardware Reference

DMA Ports
Four input signals control the IDMA port. Table 9-6 identifies and
describes these signals.

An IDMA access ends when any one of the input signals goes inactive
(high).

IAD0-15 I/O IDMA Port Address/Data Bus

IACK O IDMA Port Access Ready Acknowledge1

1 After reset, IACK is asserted (low). It stays low until an IDMA transfer is ini-
tiated. After each IDMA operation is completed, IACK is again low.

Table 9-6. IDMA Port Input Signals

Input Signal Description

IDMA Port Select (IS) This signal acts as a chip select for all IDMA operations.

IDMA Read (IRD) When both the IS and IRD signals are active (low), an IDMA
read cycle begins.

IDMA Write (IWR) When both the IS and IWR signals are active (low), an IDMA
write cycle begins.

IDMA Address Latch (IAL) When the host wishes to initiate an Address Latch Sequence, this
signal is asserted (active high). When the IS and IAL signals are
both active, an IDMA Address Latch Sequence begins. At this
point the host processor should drive the starting address of the
IDMA transfer on the IAD bus.

Table 9-5. IDMA Port Pins

Pin Name(s) Input/
Output

Function
ADSP-218x DSP Hardware Reference 9-23

IDMA Port
Asserting the IDMA Port Select (IS) and address latch enable (IAL) directs
the ADSP-218x processor to write the address on the IAD0-15 bus into
the IDMA Control register. This register, shown in Figure 9-10, is mem-
ory-mapped at address DM(0x3FE0). Note that the latched address
(IDMAA) cannot be read back by the host.

Because the IDMA Control register is a memory mapped register, the
address information can be written by either the host processor or the
DSP itself. This allows more flexibility in your system design.

Because the ADSP-2187, ADSP-2188, and ADSP-2189 processors have
additional on-chip overlay regions for Program Memory and Data Mem-
ory, these processors contain an IDMA Overlay register that allows either
the host or the DSP core to configure the specific overlay memory region
to perform a DMA access. (See Figure 9-13 on page 9-28.) The
ADSP-218x processors specified above can access this register at address
0x3FE7 in Data Memory. The host processor can access this register by
performing an IDMA address latch cycle.

IDMA Control

DM(0x3FE0)

IDMAA

Starting address

IDMAD

Destination m emory type:

0=PM
1=DM

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U U U U U U U U U U UU U U U0

Figure 9-10. IDMA Control Register
9-24 ADSP-218x DSP Hardware Reference

DMA Ports
If bit 15 is set to 1 when performing an IDMA Address Latch Cycle, the
data written on the IAD bus from the host will be written to the IDMA
Overlay register. If bit 15 is set to zero when performing the Address
Latch Cycle, the data written on the IAD bus from the host will be the
IDMA starting address, which is written into the IDMAA bit field of the
IDMA Control register.

Bits 3 through 0 of the IDMA Overlay register specify the PM Overlay
page of the IDMA transfer. Program Memory Overlays are accessed via
the IDMA port when the IDMA access is within the address range
PM 0x2000 through PM 0x3fff. Bits 7 through 4 of the IDMA Overlay
register specify the DM Overlay page of the IDMA transfer. Data Memory
Overlays are accessed via the IDMA port when the IDMA access is within
the address range DM 0x0000 through DM 0x1fff. These bit fields only
apply to the ADSP-2187, ADSP-2188, and ADSP-2189 processors, due
to their additional on-chip overlay memory regions. For all other
ADSP-218x processors these bit fields do not apply and must be set to 0.

! When accessing the internal Program Memory and Data Memory
Overlay regions of the ADSP-2187, ADSP-2188, and ADSP-2189
processors via the IDMA port, you must specify the target overlay
region in the IDMA Overlay register prior to writing the target
address to the 14-bit IDMAA starting address (bits [13:0]) of the
IDMA Control register.

Please note the following:

• Core accesses to or from DM(0x3FE7) have bit 15 always cleared

• The IDMA port cannot access off-chip overlay pages directly

• There is no interaction between the IDMA OVLAY register and the core
registers, PMOVLAY and DMOVLAY
ADSP-218x DSP Hardware Reference 9-25

IDMA Port
Through the IDMAA register, the DSP can also specify the starting address
and data format for DMA operation. Asserting the IDMA port select (IS)
and address latch enable (IAL) directs the DSP to write the address onto
the IAD0-14 bus into the IDMA Control register. The address value is
written on the bus by the host; then, the address information is written to
or latched into the IDMA Address register (IDMAA). If bit 15 is set to 0,
IDMA latches the address. If bit 15 is set to 1, IDMA latches into the
OVLAY register.

The IDMA Address register, shown in Figure 9-11, is memory mapped at
address DM (0x3FE0). Note that the latched address (IDMAA) cannot be
read back by the host.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 00 0 0 00 0 0

IDMA Overlay

DM(0x3FE7)

ID PMOV LAY

ID DMOV LAY

Note: The ID DMOVLAY and ID PMOVLAY bit
fields app ly only to the ADSP-2187, ADSP-2188,
and ADSP-2189 processors. For all other
ADSP-218x processors, these bits are unused
and must be set to 0.

Figure 9-11. IDMA Overlay Register
9-26 ADSP-218x DSP Hardware Reference

DMA Ports
Asserting the IDMA Port Select (IS) and Read strobe (IRD) inputs directs
the ADSP-218x to output the contents of the memory location pointed to
by the IDMA Control register onto the IDMA data bus.

Asserting the IDMA Port Select (IS) and Write strobe (IWR) inputs directs
the ADSP-218x to write the input from the IDMA data bus to the address
pointed to by the IDMA register.

When reading or writing to Data Memory, the IDMA data bus pins make
up a 16-bit Data Memory word. When reading or writing to Program
Memory, the upper 16 bits of the 24-bit Program Memory word are sent
first on the IDMA data bus pins. On the next IDMA port read or write,
the lowest 8 bits of the Program Memory word are sent on bits 0-7 of the
IDMA data bus. For reads, the ADSP-218x processor sets data bus lines
8-15 to 0; for writes, the ADSP-218x processor ignores bits 8-15 from the
host.

The IDMA Port Access Acknowledge (IACK) line identifies completion of
data read/write operations. It also acts as a busy signal for the IDMA port.
External devices must wait for this signal to go low before modifying the
IDMA Control register or starting the next read or write operation.
ADSP-218x DSP Hardware Reference 9-27

IDMA Port
DMA Port Functional Description
The IDMA port lets a host system directly access internal ADSP-218x
memory locations (but not the memory-mapped control registers).
Figure 9-11 shows a flow chart of the most general case for IDMA
transfers.

H o s t s ta rts ID M A tra n s fe r .

H o s t c h e c k s IA C K c o n tro l lin e
to s e e if th e D S P is " b u s y " .

H o s t u s e s IS a n d IA L c o n tro l lin e s to
la tc h th e D M A s ta rtin g a d d re s s
(ID M A A) a n d P M /D M s e le c tio n in to
th e D S P 's ID M A C o n tro l re g is te r .
T h e D S P a ls o c a n s e t th e s ta rtin g
a d d re s s a n d m e m o ry d e s tin a tio n .

H o s t u s e s IS a n d IR D (o r IW R) to
re a d (o r w rite) D S P in te rn a l m e m o ry
(P M o r D M).

H o s t e n d s ID M A tra n s fe r .

H o s t c h e c k s IA C K lin e t o s e e if th e
D S P h a s c o m p le te d th e p re v io u s
ID M A o p e ra t io n .

C o n tin u e ?

Y e s

N o

Figure 9-13. General IDMA Transfer Flow Chart
9-28 ADSP-218x DSP Hardware Reference

DMA Ports
In the case shown in Figure 9-12, the host system starts an IDMA transfer
by checking the state of the IACK line to determine port status
(ready/busy). When the IDMA port is ready (when the IACK signal is low),
the host directs the ADSP-218x (with the IS and IAL lines) to latch the
IDMA internal memory address from the IDMA address/data bus to the
IDMA Control register. (Note that the latched address cannot be read
back by the host.)

Next, the host (using the IS and IRD or IS and IWR lines) begins reading
(or writing) the DSP’s internal memory until done. With each IDMA read
or write operation, the ADSP-218x automatically increments the IDMA
internal memory address. Note that the ADSP-218x continues program
execution throughout the IDMA transfer operation, except during the
“stolen” cycle used to do the memory access.

! The IDMAA starting address field of the IDMA Control register
wraps around when incrementing from addresses PM 0x3fff and
DM 0x3fff. In other words, for the next IDMA access, the value for
the IDMAA address field will point to address location PM 0x0000
or DM 0x0000.

The case shown in Figure 9-12 is not the only way to use the IDMA port.
Some variations on this scheme include the following:

• After completing an IDMA port read/write operation, the host
could change the IDMA internal memory address and start a new
operation from a different starting address.

• After latching an IDMA internal memory address, the host could
stop the operation and come back at a later time to proceed with the
read/write operation. The IDMA starting memory address remains
in the IDMA Control register until the host or DSP changes it.

• The ADSP-218x processor can also read and write the IDMA Con-
trol register as part of your program. This means that the host could
just control read/write operations and let the ADSP-218x processor
control the IDMA starting memory address.
ADSP-218x DSP Hardware Reference 9-29

IDMA Port
• Using the IDMA short read cycle (which does not wait for the
data-ready assertion of the IACK signal), you could set up a sin-
gle-location data buffer for IDMA read transfers. For information
on how this data buffer would work, see “Short Read Cycle” on
page 9-37.

• For ADSP-218x applications with a host processor or host ASIC
that does not use a data-ready or write-complete acknowledge, use
the IDMA short read/write cycles.

There are some restrictions on IDMA operations. These hardware/soft-
ware design restrictions include the following:

• If your design has both the host and ADSP-218x processors writing
to the IDMA Control register, do not let both write to this register
at the same time; the results of this are indeterminate.

• Host reads of internal Program Memory take two IDMA reads (for
a 24-bit word through a 16-bit port). If an IDMA address latch
cycle or an ADSP-218x processor write to the IDMA Control regis-
ter occurs after the first Program Memory read cycle, the IDMA
port “loses” the second half of the 24-bit Program Memory word.
The next IDMA read or write uses the address selected by the new
contents of the IDMA Control register. Note that writing to the
IDMA Control register after the first half of a Program Memory
IDMA read lets you read just 16-bit data from Program Memory.

• Host writes to internal Program Memory take two IDMA writes
(for a 24-bit word through a 16-bit port). If an IDMA address latch
cycle or a ADSP-218x write to the IDMA Control register occurs
after a first Program Memory write cycle, the IDMA port “loses” the
Program Memory word without changing the contents of memory.
The next IDMA read or write accesses the address selected by the
new contents of the IDMA Control register.
9-30 ADSP-218x DSP Hardware Reference

DMA Ports
• Host memory accesses through the IDMA port that occur while the
ADSP-218x processor is in powerdown have some restrictions. See
Chapter 7, “System Interface” for information on powerdown
restrictions on IDMA port transfers.

Modifying Control Registers for IDMA
The ADSP-218x’s memory-mapped control registers are protected from
DMA transfers to prevent accidental corruption. You may want the host
processor to read and write these registers, however, in order to determine
the ADSP-218x’s configuration and then change it.

To read the memory-mapped control registers, you must first transfer the
contents of these locations to another area of internal RAM. Listing 9-1
shows a loop that performs this task:

Listing 9-1. Loop to Transfer Memory-Mapped Control Register Contents

#define NUM_REG 32

.section/dm Data_Memory;

.var temp_array[NUM_REG];

.section/pm Program_Code;
i0 = temp_array; /* i0 points to 1st location of

buffer */
l0 = 0; /* length of zero means

non-circular buffer */
i1 = 0x3fe0; /* i1 points to 1st memory mapped

control register */
l1 = 0; /* length of zero means

non-circular buffer */
m1= 1; /* modify DAG registers by one

after each access */
cntr = NUM_REG; /* counter equals number of

elements in buffer to be
swapped */
ADSP-218x DSP Hardware Reference 9-31

IDMA Port
do transfer until ce; /* loop body begins at the next
instruction */

ax0 = dm(i0,m1); /* read from buffer written to by
host via IDMA */

transfer:dm(i1,m1) = ax0; /* transfer buffer values to
memory-mapped control
registers */

To have the host write to the memory-mapped control registers, you must
first load the values to a temporary buffer (through the IDMA port) and
then signal the ADSP-218x processor to transfer the contents of the tem-
porary buffer to the memory-mapped control registers. This transfer is
performed in a manner similar to that shown in Listing 9-1. You should
set up some form of signalling between the host and the ADSP-218x pro-
cessor: interrupts, flag I/O, or a mailbox register. This signalling provides
a mechanism for the host to tell the DSP when to perform an operation
and vice versa.

IDMA Timing
From the host system interface point of view, there are four IDMA port
operations with critical timing parameters. These operations are:

• Latching the IDMA internal memory address

• Latching the IDMA Overlay pages (ADSP-2187, ADSP-2188,
ADSP-2189 processors only)

• Reading from the IDMA port

• Writing to the IDMA port

The following sections cover the timing details for each of these
operations.
9-32 ADSP-218x DSP Hardware Reference

DMA Ports
Address Latch Cycle

The host writes the DMA starting address and destination memory type
(DM or PM) using the IDMA address latch cycle. The address latch cycle,
shown in Figure 9-14, consists of the following steps:

1. Host ensures that IACK line is low.

2. Host asserts IAL and IS, directing the ADSP-218x processor to
latch the IDMA starting address from the IAD15-0 address/data
bus into the IDMA Control register.

3. Host drives the starting address (bits 13-0) and destination mem-
ory type (bit 14) onto the IAD15-0 bus. (Bit 15 must be a 0.)

! The IRD and IWR remain high (inactive) throughout the latch oper-
ation.

IACK

IAL

IS

IAD15-0 ADDRESS

The IDMA address value
is latched here on either
the rising edge of the IS
signal or the falling edge
of the IAL signal.

Figure 9-14. IDMA Address Latch or Overlay Latch Cycle
ADSP-218x DSP Hardware Reference 9-33

IDMA Port
! The IDMA starting address and destination memory type is avail-
able to the host and to the ADSP-218x processor in the IDMA Con-
trol register. For Data Memory accesses, the ADSP-218x processor
increments the address automatically after each IDMA read or write
transfer (16-bit word). For Program Memory accesses, the
ADSP-218x processor increments the address automatically after
each pair of IDMA read or write transfers (24-bit word).

" Both the ADSP-218x processor and the host can specify the starting
address by writing to the IDMA Control register. Do not let the
ADSP-218x processor access the IDMA Control register while it is
being written by the host; this operation will have an indeterminate
result.

Overlay Latch Cycle

The Overlay latch cycle applies only to the ADSP-2187L and all M and N
series processors. The host writes the DMA starting address and destina-
tion memory type (DM or PM) using the IDMA address latch cycle. The
overlay latch cycle, shown in Figure 9-14 on page 9-33, consists of the fol-
lowing steps:

1. Host ensures that IACK line is low.

2. Host asserts IAL and IS, directing the ADSP-218x processor to
latch the IDMA Overlay pages from the IAD15-0 address/data bus
into the IDMA Overlay register.

3. The host drives a 1 on bit 15, the DMOVLAY value on bits 7:4, and
the PMOVLAY value on bits 3:0

! The IRD and IWR remain high (inactive) throughout the latch oper-
ation.
9-34 ADSP-218x DSP Hardware Reference

DMA Ports
Long Read Cycle

An IDMA long read cycle can be performed if your host processor uses a
data-ready acknowledge signal to notify the host when to latch data on the
IAD bus or if the host is configured to wait for the worst case data delay. A
long read cycle could be used by a Motorola 68322 processor for example,
where the IACK signal of the ADSP-218x processor would be connected to
the DTACK signal of the Motorola 68322.

The host reads the contents of an ADSP-218x processor internal memory
location using the IDMA port long read cycle. The read cycle, shown in
Figure 9-15, consists of the following steps:

1. Host ensures that IACK line is low.

2. Host asserts IRD and IS (low), causing the ADSP-218x processor to
put the contents of the location pointed to by the IDMA address
on the IAD15-0 address/data bus.

3. ADSP-218x processor deasserts IACK line, indicating the requested
data is being fetched. When the ADSP-218x processor asserts the
IACK line, the requested data is driven on the IAD address/data bus.

4. Host detects the IACK line is now low and reads the data (Read
Data) from the IAD15-0 address/data bus. (Alternately, the host
can just wait a fixed worst case delay, which also guarantees the
IACK signal is low again. After reading the data, the host deasserts
IRD and IS.

! The IAL is low (inactive) and IWR is high (inactive) throughout the
read operation.
ADSP-218x DSP Hardware Reference 9-35

IDMA Port
IDMA memory accesses “steal” one processor cycle, but they may only
occur on instruction cycle boundaries. The best-case response for a 16-bit
Data Memory read or the first 16 bits of a Program Memory read is 2.5
processor cycles; the worst case response is 3.5 cycles. One cycle is for syn-
chronization, one is for reading the memory internally, and one-half cycle
is for IACK setup time.

A second cycle of synchronization may be required. Thus the best-case
and worst-case response times are determined as follows:

Best Case: 1 cycle (sync) + 1 cycle (internal memory read) +
0.5 cycle (IACK setup) = 2.5 cycles

Worst Case: 1 cycle (sync) + 1 cycle (sync) + 1 cycle (internal
memory read) + 0.5 cycle (IACK setup) = 3.5 cycles

IACK

IS

IRD

IAD15-0 PREVIOUS
DATA

READ
DATA

Host latches data here
(at the falling edge
of the IACK signal).

Figure 9-15. IDMA Long Read Cycle
9-36 ADSP-218x DSP Hardware Reference

DMA Ports
In the case of a Program Memory operation, the second IDMA port read
cycle for a given internal 24-bit word does not require an internal memory
access, does not wait for an instruction cycle boundary, and takes 1.5 or
2.5 cycles.

The best- and worst-case response times given above assume no system
hold offs. Hold offs for DMA transfers are defined in the section “DMA
Cycle Stealing, Hold Offs, and IACK Acknowledge” on page 9-47.

" If an IDMA address latch cycle or an ADSP-218x processor write to
the IDMA Control register occurs after a first Program Memory
read cycle (16 bits), the IDMA port will lose the second half of the
Program Memory word. The ADSP-218x processor treats the next
IDMA access as the first operation for the new IDMA address and
destination.

Short Read Cycle

Figure 9-16 on page 9-38 shows the host reading the contents of an
ADSP-218x processor’s internal memory location using the IDMA short
read cycle.The short read cycle can be used to allow the host to operate
more quickly by not waiting for the internal access to complete. This
method can be used if the host can do read accesses shorter than tIRDH1
and tIRDH2 and longer than tIRP1.
ADSP-218x DSP Hardware Reference 9-37

IDMA Port
The read cycle consists of the following steps:

1. Host ensures that IACK line is low.

2. Host asserts IRD and IS (low), directing the ADSP-218x processor
to put the contents of the location pointed to by the target IDMA
address on the IAD15-0 address/data bus.

3. ADSP-218x processor deasserts IACK line, indicating the requested
data is being fetched.

4. The host asserts the IS and IRD signals for a minimum amount of
time, adhering to the tIRP timing specification. The host then
latches the Previous Data and deasserts the IS and IRD signals prior
to tIRDH1or tIRDH2. (See the subsection entitled “IDMA Read, Short
Read Cycle Timing” in the “Timing Parameters” section of the
appropriate ADSP-218x processor data sheet.)

IA C K

IS

IR D

IA D 1 5 -0
P R E V IO U S
D A T A

D a ta is la tc h e d h e re .

t IR D H 1 o r t IR D H 2

If th e IS o r IR D s ig n a ls a re
h e ld a s s e rte d p a s t th is p o in t,
th e d a ta c h a n g e s to th e n e x t
R e a d D a ta .

t I IR P

Figure 9-16. IDMA Short Read Cycle
9-38 ADSP-218x DSP Hardware Reference

DMA Ports
! The host ignores the falling edge of the IACK signal, since the data is
latched by the host on the rising edge of the IS or IRD signal not on
the falling edge of the IACK signal.

The host must perform an initial “dummy read,” since the first short read
access reads in the Read Data from the IAD bus. The next short read
access reads in the first correct data word, Previous Data, on the IAD bus.
The advantage of using short read accesses versus long read accesses is that
short reads allow for shorter block transfer times.

! IAL is low (inactive) and IWR is high (inactive) throughout the read
operation.

The IDMA short read and long read cycles provide different alternatives
for implementing your DMA transfers. Short reads are useful for hosts
that can handle the faster timing of these accesses, while long reads allow
slower hosts more time.

The IDMA short read cycle also serves as a single-location data buffer. If
you are using the ADSP-218x processor in a multiprocessing environ-
ment, using this buffer is one way to avoid tying up the IAD bus (waiting
for the IACK signal).

" If an IDMA address latch cycle or a ADSP-218x processor write to
the IDMA Control register occurs after a first Program Memory
read cycle, the IDMA port will lose the second half of the Program
Memory word. The ADSP-218x processor treats the next host data
on the IAD address/data bus as the new contents of the IDMA Con-
trol register.
ADSP-218x DSP Hardware Reference 9-39

IDMA Port
IDMA Read—Short Read Only Mode

A new IDMA read mode cycle, Short Read Only Mode, has been added
for the ADSP-218x M and N series processors. Because these processors
are running at an increased clock rate (up to 75 MHz maximum for the M
series processors and up to 80 MHz maximum for the N series processors),
this increase in clock speeds has made the timing window for a host pro-
cessor more critical when performing IDMA short read accesses.

To alleviate this timing constraint, the ADSP-218x M and N series pro-
cessors provide support for an enhancement to the IDMA read cycle. The
Short Read Cycle in Short Read Only Mode allows a host processor to
read in only the Previous Data. This allows for longer timing duration on
the IRD and IS signals by removing the maximum tIRDH1and tIRDH2 timing
constraints. This increase in timing duration relieves the processor from
complying with the tighter timing restrictions of the DSP. As shown in
Figure 9-17, the IRD and IS signals can be held active indefinitely, allow-
ing for the host processor to always latch in the Previous Data.

IACK

IS

IRD

IAD15-0 PREVIOUS
DATA

Figure 9-17. IDMA Short Read Cycle in Short Read Only Mode Timing
9-40 ADSP-218x DSP Hardware Reference

DMA Ports
The Short Read Only mode can be enabled or disabled by setting or clear-
ing bit 14 in the IDMA Overlay register. The default value for this bit (as
well as the remaining bits in this control register) are shown in
Figure 9-18.

! This bit applies to the ADSP-218x M and N series processors only.
For all other ADSP-218x processors, this bit is unused and should
be set to 0. Also, all bits shown in grey are reserved and must
be set to 0.)

Long Write Cycle

As with IDMA long read cycles, an IDMA long write cycle can be per-
formed if your host processor uses a data-ready acknowledge signal to
notify the host when to stop driving data on the IAD bus. A long write
cycle could be used by a Motorola 68322 processor for example, where the
IACK signal of the ADSP-218x processor would be connected to the DTACK
signal of the Motorola 68322.

IDMA Overlay

DM(0x3FE7)

ID PMOVLAY

ID DMOVLAY

Short Read Only
0=Disable
1=Enable

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 00 0 0 00 0 0 0 0 00 0 0

Reserved
Set to 0

Reserved
Set to 0

Figure 9-18. IDMA Overlay Register (Short Read Only Mode)
ADSP-218x DSP Hardware Reference 9-41

IDMA Port
The host writes the contents of an internal memory location using the
IDMA long write cycle. The write cycle, shown in Figure 9-19, consists of
the following steps:

1. Host ensures that IACK line is low.

2. Host asserts IWR and IS (low), directing the ADSP-218x processor
to write the data on the IAD15-0 address/data bus to the location
pointed to by the target IDMA address.

3. ADSP-218x processor deasserts the IACK line, indicating it recog-
nizes the IDMA write operation.

4. Host drives the data on the IAD address/data bus.

5. ADSP-218x processor asserts IACK line, indicating it latched the
data on the IAD15-0 address/data bus.

6. Host recognizes the IACK line is now low, stops driving the data on
the IDMA address/data bus and deasserts IWR and IS (ending the
IDMA long write cycle).

Note that IAL is low (inactive) and IRD is high (inactive) throughout the
write operation.
9-42 ADSP-218x DSP Hardware Reference

DMA Ports
! IDMA port writes to Program Memory require two IDMA port
write cycles to write a word to ADSP-218x processor internal Pro-
gram Memory. The ADSP-218x processor acknowledges the IDMA
port write of the first 16 bits (MSBs of PM word) as they are written
to a temporary holding latch, not waiting for an instruction cycle
boundary. The ADSP-218x processor does not assert the IACK line
after the second Program Memory write (or all Data Memory
writes) until the internal memory write is complete and the IDMA
port is ready for another transaction.

IACK

IS

IRD

IAD15-0
DATA

Host stops driving
data here.

Figure 9-19. IDMA Long Write Cycle
ADSP-218x DSP Hardware Reference 9-43

IDMA Port
" Host IDMA write accesses to internal Program Memory take two
IDMA port writes (24-bit word through a 16-bit port). If an IDMA
address latch cycle or a ADSP-218x processor write to the IDMA
Control register occurs after a first program memory write cycle, the
IDMA port “loses” the Program Memory word without changing
the contents of ADSP-218x processor internal memory. The next
IDMA read or write uses the address selected by the new contents
of the IDMA Control register.

Short Write Cycle

An IDMA short write cycle should be performed if your host processor
does not use a data-ready acknowledge signal to signify the completion of
a write access.

The host writes the contents of a ADSP-218x processor internal memory
location using the IDMA short write cycle. The write cycle, shown in
Figure 9-20, consists of the following steps:

1. Host ensures that IACK line is low.

2. Host asserts IWR and IS (low), directing the ADSP-218x processor
to write the data on the IAD15-0 address/data bus to the location
pointed to by the target IDMA address.

3. ADSP-218x processor deasserts IACK line (high), indicating it rec-
ognizes the IDMA write operation.

4. Host drives the data on the IAD address/data bus.

5. Host deasserts IWR and IS after meeting the short write timing
requirements (ending the short write cycle).

6. ADSP-218x processor detects IWR and IS have gone high, then
latches the data on the IAD address/data bus.
9-44 ADSP-218x DSP Hardware Reference

DMA Ports
7. Host stops driving the data on the IAD15-0 address/data bus after
meeting the short write timing requirements. (See the tIRP timing
specification in the subsection entitled “IDMA Read, Short Write
Cycle” in the “Timing Parameters” section of the appropriate data
sheet.)

! IAL is low (inactive) and IRD is high (inactive) throughout the write
operation.

IDMA port writes to Program Memory require two IDMA port write
cycles to write a word to ADSP-218x processor internal Program Memory.
The ADSP-218x processor acknowledges the IDMA port write of the first
16 bits (MSBs of PM word) as they are written to a temporary holding
latch.Writes to this holding latch are not done on an instruction cycle
boundary. The ADSP-218x processor does not assert the IACK line (low)
after the second Program Memory write (or all Data Memory writes) until
the internal memory write is complete (performed on an instruction cycle
boundary) and the IDMA port is ready for another transaction.

IACK

IS

IRD

IAD15-0
DATA

Host stops driving
data here.

Figure 9-20. IDMA Short Write Cycle
ADSP-218x DSP Hardware Reference 9-45

IDMA Port
" If an IDMA address latch cycle or a ADSP-218x processor write to
the IDMA Control register occur after a first Program Memory
write cycle, the IDMA port will lose the first half of the Program
Memory word. The next Program Memory write will be considered
the first half of a Program Memory write pair.

There are two features that differentiate the IDMA port long write from
the IDMA short write. The long write supports hosts (processors or
ASICs) that allow a data-written acknowledge. If your host needs the
ADSP-218x processor to signal that it has written the data, use the IDMA
long read cycle.

The short write lets your host hold data on the bus just until it is latched
and then releases the bus. If you are using the ADSP-218x processor in a
multiprocessing environment, using the short write is one way to avoid
tying up the IAD15-0 data bus (waiting for the IACK signal). Short writes
are also useful for hosts that can handle the short write timing but cannot
extend the accesses with the IACK signal (when hold offs occur).

Boot Loading through the IDMA Port
The ADSP-218x processor supports boot loading through the IDMA
port. To boot through the IDMA port, use the following steps:

• Reset the processor (assert RESET).

• Set MMAP=0 and BMODE=1 (ADSP-2181 and ADSP-2183 processors)
or Mode A=1 and Mode C=1 (all other ADSP-218x processors). These
pin settings select IDMA booting.

• Deassert RESET.
9-46 ADSP-218x DSP Hardware Reference

DMA Ports
• Load ADSP-218x processor internal memory through the IDMA
port. Program execution is held off until you write to Program
Memory address zero, PM(0x0000). The ADSP-218x processor
responds to IDMA control signals (IAL, IS, IWR, and IRD) and pro-
vides acknowledge (IACK) in the same manner as during non-boot-
ing IDMA transfers.

• Write to PM(0x0000) to begin program execution.

"Make certain to load all of the necessary memory locations with the
proper data before writing to PM 0x0000. When configured for an
IDMA boot, the DSP core executes an IDLE instruction until PM
0x0000 is written to by the host via the IDMA port. Writing to this
PM location forces the DSP to begin program execution from
PM 0x0000.

DMA Cycle Stealing, Hold Offs, and IACK
Acknowledge

ADSP-218x processors generate the IACK signal to notify the system that it
is safe to read or write through the IDMA port. After reset, IACK is
asserted (low). It stays low until an IDMA transfer is initiated. After each
IDMA operation is completed, the IACK signal will again be low.

In order for IACK to be asserted (low) during the IDMA operation, the
IDMA port must have completed the internal memory access by either
writing data to memory or reading data from memory. The IDMA port
must “steal” a processor cycle to do this. In order to steal a processor cycle,
the IDMA port must wait for an instruction completion boundary. Thus
if IACK is not asserted, it is not safe for the host to access the IDMA port.
ADSP-218x DSP Hardware Reference 9-47

IDMA Port
In most cases, there is an instruction boundary on every clock cycle
(CLKOUT period) and the IDMA port can complete its transfer in a given
period of time. There are, however, some situations where either the
ADSP-218x processor does not complete an instruction in one clock cycle
or the IDMA port cannot access memory. These situations are called
DMA hold offs. The following describes DMA hold-off situations:

• Bus Request — If the ADSP-218x processor is being held in Bus
Request when it attempts an external access (DM Overlay, PM
Overlay, or I/O memory space), or if it is not in Go mode, processor
execution stops in the middle of the cycle and no instruction bound-
ary is encountered. Therefore, the IDMA port cannot complete its
internal memory access and IACK will be held off.

• External Access with Wait State(s) — If the ADSP-218x processor
is performing a wait-stated external access (DM Overlay, PM Over-
lay, or I/O memory space), then the instruction cycle will not com-
plete until the access has completed; the IDMA port cannot steal a
cycle, and IACK will be held off.

• Multiple External Accesses — If the ADSP-218x processor is exe-
cuting a multifunction instruction where more than one of the
required elements (PM instruction fetch, PM data access, or DM
data access) resides externally, it will require more than one cycle to
complete the instruction and IACK will be held off. Likewise, if the
ADSP-218x processor is executing an instruction from external PM
that initiates an I/O memory space access, IACK will be held off until
the cycle completes.

• IDLE n (clock-reducing IDLE instruction) — Because this instruc-
tion slows down the effective cycle time of the ADSP-218x proces-
sor, IACK may be delayed.
9-48 ADSP-218x DSP Hardware Reference

DMA Ports
• SPORT Autobuffering to External Memory with Wait Stated
Access — When one of the processor’s serial ports needs to access
external memory for autobuffering and the external access takes
more than one cycle, the IDMA transfer will be held off.

• EZ-ICE Emulation — When the EZ-ICE emulator is controlling
your ADSP-218x processor target system, IDMA transfers may be
held off for periods of time.

Priority Chain

The ADSP-218x processor priority chain for concurrent requests occur-
ring at instruction cycle boundaries is as follows:

1. Completion of an external memory access

2. IDMA internal memory transfers

3. BDMA internal memory transfers

4. SPORT autobuffer operations

5. Emulator interrupt

6. Emulator instruction

7. Powerdown interrupt

8. Unmasked interrupt

9. Normal instruction execution

Using the IACK signal simplifies your system design by allowing you to
ignore hold-off conditions. If you always wait for IACK to assert before
accessing the IDMA port, the DMA transfers will always operate properly.
ADSP-218x DSP Hardware Reference 9-49

IDMA Port
You can ignore IACK, however, if you are sure that no hold-offs occur in
your system or if your IDMA accesses are longer than any hold-offs. To be
sure of this, you must carefully analyze all possible hold-off conditions of
your system.
9-50 ADSP-218x DSP Hardware Reference

10 HARDWARE INTERFACING
AND EXAMPLES

Figure 10-0.

Table 10-0.

Listing 10-0.
Overview
This chapter contains two major sections: Interfacing to DSP Processors and
Interfacing Examples. The Interfacing to DSP Processors section provides
detailed information about interfacing ADSP-218x family processors to
analog-to digital converters (ADCs), digital-to-analog converters (DACs)
and coder/decoders (codecs). The Interfacing Examples section provides
some simple examples of interfacing ADSP-218x family processors to
ADCs, DACs, and codecs.

Interfacing to DSP Processors
Current technology offers highly integrated DSPs that contain on-chip
ADCs and DACs, as well as the DSP itself. These integrated DSPs elimi-
nate most of the interface problems of separate components. Additionally,
stand-alone ADCs and DACs are now available with interfaces especially
designed for DSP chips, thereby minimizing or eliminating external inter-
face support or glue logic.

High performance sigma-delta ADCs and DACs are currently available
separately or in the same package (called a codec). Some examples of
codecs include the AD73311 and AD73322. These products are also
designed to require minimum glue logic when interfacing to the most
common DSP chips. This section discusses the various data transfer and
timing issues associated with ADCs, DACs, and codecs.
ADSP-218x DSP Hardware Reference 10-1

Interfacing to DSP Processors
Parallel Interfacing to DSP Processors
Interfacing an ADC or a DAC to a fast DSP via a parallel interface
requires an understanding of how the DSP processor reads data from a
memory-mapped peripheral (the ADC) and how the DSP processor writes
data to a memory-mapped peripheral (the DAC). We will first consider
some general timing requirements for reading and writing data. It should
be noted that the same concepts presented here regarding ADCs and
DACs apply equally when reading and writing from/to external memory.

Reading Data from Memory-Mapped ADCs

Figure 10-1 provides a block diagram for a typical parallel DSP interface
to an external ADC. This diagram has been greatly simplified to show
only those signals associated with reading data from an external mem-
ory-mapped peripheral device.

RD

IRQ

IOMS
ADDRE SS

DECODE

SAMPLIN G

CLOCK

1

2

4 5

6

7

M EMOR Y
ADDRES S BUS

INPUT/OUTPUT

PROCESSOR

INTERRU PT

REQUES T

M EMORY READ

M EMORY DATA

A0-A11

D8-D23

ADSP-218X DAC

CONVERT START

CHIP S ELECT

CONVERSION

COMPLETE

OUTPUT ENABLE

OUTPUT DAT A

3

M EMORY SELE CT

BUS

8

Figure 10-1. ADC to ADSP-218x DSP Parallel Interface
10-2 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
Figure 10-2 shows the timing diagram for the ADSP-218x read-cycle.

In this example, it is assumed that the ADC is sampling at a continuous
rate which is controlled by the external sampling clock, not the internal
DSP clock. Using a separate clock for the ADC is the preferred method,
since the DSP clock may be noisy and introduce jitter in the ADC sam-
pling process, thereby increasing the noise level.

Assertion of the sampling clock at the ADC convert start input initiates the
conversion process (step 1). The leading (or trailing) edge of this pulse
causes the internal ADC sample-and-hold to switch from the sampling
mode to the hold mode so that the conversion process can take place.

DSP

CLKOUT

A0-A11

IOMS

RD

D8-D23

 t AS R

 t CRD
 t R P

 t RDA

 t RW R

 t RDH
 t AA

 t RDD

Figure 10-2. ADSP-218x DSP Memory Read Timing
ADSP-218x DSP Hardware Reference 10-3

Interfacing to DSP Processors
When the conversion is complete, the conversion complete output of the
ADC is asserted (step 2). The read process thus begins when this signal is
applied to the processor interrupt request line (IRQ) of the DSP. The pro-
cessor then places the address of the peripheral initiating the interrupt
request (the ADC) on the memory address bus (A13- A0) (step 3). At the
same time, the processor asserts a memory select line (IOMS is shown here)
(step 4).

The two internal address buses of the ADSP-218x (Program Memory
address bus and Data Memory address bus) share a single external address
bus, and the two internal data buses (program memory data bus and data
memory data bus) share a single external data bus. The boot memory
select (BMS), data memory select (DMS), program memory select (PMS), and
input/output memory select (IOMS) signals indicate which memory space
the external buses are being used for. These signals are typically used to
enable an external address decoder as shown in Figure 10-1. The output of
the address decoder drives the chip select input of the peripheral device
(step 5).

The memory read (RD) is asserted tASR ns after the IOMS line is asserted (step
6). The sum of the address decode delay plus the peripheral chip select
setup time should be less than tASR in order to take full advantage of the RD
low-time. The RD line remains low for tRP ns. The memory read signal is
used to enable the three-state parallel data outputs of the peripheral device
(step 7). The RD line is connected to the appropriate pin on the peripheral
device usually called output enable or read. The rising edge of the RD sig-
nal is used to clock the data on the data bus into the DSP processor (step
8). After the rising edge of the RD signal, the data on the data bus must
remain valid for tRDH ns, the data hold time. In the case of most members
of the ADSP-218x family, this specification value is 0 ns.
10-4 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
The following list provides the key requirements for a parallel peripheral
device read interface. Values are given for the ADSP-2189M DSP operat-
ing at 75 MHz.

• Peripheral device data outputs must be three-state compatible

• Address decode delay plus peripheral chip select setup time must be
less than address and memory select setup time tASR (0.325 ns min-
imum for an ADSP-2189M DSP)

• For zero wait-state access, the time from a negative-going edge of
read signal (RD) to output data valid must be less than tRDD (1.65 ns
maximum for an ADSP-2189M DSP operating at 75 MHz). Oth-
erwise, software wait states must be added or processor clock fre-
quency reduced.

• Output data from the peripheral must remain valid for tRDH from
the rising edge of read signal (RD) (0 ns for the ADSP-2189M)

• The peripheral device must accept minimum output enable pulse
width of tRP (3.65 ns for ADSP-2189M operating at 75 MHz).
Otherwise, software wait states must be added or processor clock
frequency reduced.

The DSP tRDD specification determines the peripheral device data access
time requirement. In the case of the ADSP-2189M, tRDD = 1.65 ns mini-
mum at 75 MHz. If the access time of the peripheral is greater than this,
wait states must be added or the processor speed reduced. This is a rela-
tively common situation when interfacing external memory or ADCs to
fast DSPs.
ADSP-218x DSP Hardware Reference 10-5

Interfacing to DSP Processors
The following equations provide the relationship between these timing
parameters for the ADSP-2189M (these specifications are dependent on
the DSP clock frequency):

• tCK = Processor Clock Period (13.3 ns)

• tASR = Address and Memory Select Setup before Read Low =
0.25tCK – 3 ns minimum

• tRDD = Read Low to Data Valid = 0.5 tCK – 5 ns + # wait states x tCK
maximum

• tRDH = Data Hold from Read High = 0 ns minimum

• tRP= Read Pulse Width = 0.5 tCK – 3ns + # wait states x tCK minimum

The ADSP-2189M processor can be interfaced easily to slow peripheral
devices, using its programmable wait state generation capability. Three
registers control wait state generation for boot, program, data and I/O
memory spaces. You can specify 0 to 15 wait states for each parallel mem-
ory interface. Each added wait state increases the allowable external data
memory access time by an amount equal to the processor clock period
(13.3 ns for the ADSP-2189M operating at 75 MHz). In this example, the
I/O memory address, IOMS, and RD lines are all held stable for an additional
amount of time equal to the duration of the wait states.

The AD7854/AD7854L is an example of ADCs that operated in parallel
mode, It is a 12 bit, 200/100 KSPS ADC. It operates on a single +3 V to
+5.5 V supply and dissipates only 5.5 mW (+3 V supply, AD7854L). An
automatic powerdown after conversion feature reduces this to 650 µW.
10-6 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
Figure 10-3 shows a functional block diagram of the AD7854/AD7854L.
The AD7854/AD7854L uses a successive approximation architecture,
which is based on a charge redistribution (switched capacitor) DAC. A
calibration mode removes offset and gain errors.

T/H

COMP

2.5 V

REFER ENCE

CHARGE

REDISTRIB UTION
DAC SAR + ADC

CONTROL

PARALLEL INTERFAC E/CONTROL REGISTER

CALIBRATIO N

MEMORY

AND CONTRO LLER

AVDD AGND
AIN(+)

AIN(–)

REFIN /

REFOUT

CREF1

DB11-DB0 CS RD WR HBEN

DVDD

DGND

CLKIN

CONVST

BUSY

AD7854 /AD7854L

BUF

CREF2

ADC

Figure 10-3. AD7854/AD7854L Functional Block Diagram
ADSP-218x DSP Hardware Reference 10-7

Interfacing to DSP Processors
The key interface timing specifications for the AD7854/AD7854L and the
ADSP-2189M are compared in Table 10-1. Specifications for the
ADSP-2189M are given for a clock frequency of 75 MHz.

Examining the timing specifications shown in Table 10-1reveals that for
the timing between the devices to be compatible, 5 software wait states
must be programmed into the ADSP-2189M. This increases tRDD to
68.15 ns, which is greater than the data access time of the
AD7854/AD7854L (t8 = 50 ns maximum). The read pulse, tRP, is likewise
increased to 70.15 ns, which meets the ADC’s read pulse width require-
ment (t7 = 70 ns minimum). Unless the memory-mapped peripheral has
an extremely short access time, wait states are generally required, whether
interfacing to ADCs, DACs, or external memory.

Table 10-1. Parallel Read Interface Timing Specification Comparison
between the ADSP-2189M and AD7854/AD7854L

ADSP-2189M Processor (75 MHz) AD7854/AD7854L ADC

tASR (Data Address Memory Select Setup Time

before RD Low) = 0.325 ns minimum

t5 (CS to RD Setup Time) = 0 ns minimum

(Must add Address Decode Time to this value)

1tRP (RD Pulse Width) = 3.65 ns + # wait

states x 13.3 ns minimum = 70.15 ns mini-
mum

1 Adding 5 wait states to the ADSP-2189M DSP increases tRP to 70.15 ns, which is greater than
t7 (70 ns) and meets the t8 (50 ns) requirement.

t7 (RD Pulse Width) = 70 ns minimum

tRDD (RD Low to Data Valid) = 1.65 ns + #

wait states x 13.3 ns minimum = 68.15 ns
minimum

t8 (Data Access Time after RD) = 50 ns maxi-

mum

tRDH (Data Hold from RD High) = 0 ns mini-

mum

2t9 (Bus Relinquish Time after RD) = 5 ns

minimum/40 ns maximum

2 t9 maximum (40 ns) may cause bus contention if a write cycle immediately follows the read cycle.
10-8 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
A simplified interface diagram for the two devices is shown in Figure 10-4.
The conversion complete signal from the AD7854/AD7854L corresponds
to the BUSY output pin. Notice that the configuration allows the DSP to
write data to the AD7854/AD7854L parallel interface control register.
This is needed in order to set various options in the AD7854/AD7854L
and perform the calibration routines. In normal operation, however, data
is read from the AD7854/AD7854L as described above. Writing to exter-
nal parallel memory-mapped peripherals is discussed in the next section,
“Writing Data to Memory-Mapped DACs”,

R D

IR Q

D M S

D 23-D 8

AD S P-2 18 9M

75 M Hz

A 0

W R

S A M P LIN G

C LO C K

AD 7 854 /A D 785 4L

A D C

C O N V ST

C S

B U S Y

R D

D B 1 1-D B 0

H B E N

W R

5 so ftw a re w a it s tates

H B E N a nd W R req uired for w riting to A D C

S am pling c loc k m ay com e fro m D S P

(LO W = R E A D D B 11-D B 0)

D A T A

N otes:

D S P

Figure 10-4. AD7854/AD7854L ADC Parallel Interface to ADSP-2189M
ADSP-218x DSP Hardware Reference 10-9

Interfacing to DSP Processors
Parallel interfaces between other DSP processors and external peripherals
can be designed in a similar manner by carefully examining the timing
specifications for all appropriate signals for each device. The data sheets
for most ADCs contain sufficient information in the application section
to interface them to the DSPs.

Writing Data to Memory-Mapped DACs

Figure 10-5 shows a simplified block diagram of a typical DSP interface to
a parallel peripheral device (such as the DAC shown in this figure).

RD

IRQ

IOMS
ADDRE SS

DECODE

SAMPLING

CLOCK

1

3 5

4

6

MEMORY
ADDRESS BUS

INPUT/OUTPUT

PROCESSOR

INTERRUPT

REQUEST

MEMORY READ

MEMORY DATA

A0-A11

D8-D23

ADSP-218X DAC

DAC LATCH
STROBE

CHIP SELECT

INPUT LATCH
STROBE

PARALLEL DATA
INPUT

2

MEMORY SELE CT

BUS

7

1

Figure 10-5. DAC to ADSP-218x DSP Parallel Interface
10-10 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
Figure 10-6 shows the memory-write cycle timing diagram for the
ADSP-21xx-family.

In most real-time applications, the DAC is operated continuously from a
stable sampling clock. Most DACs for these applications have double
buffering: an input latch to handle the asynchronous DSP interface, fol-
lowed by a second latch (called the DAC latch), which drives the DAC
current switches. The DAC latch strobe is derived from an external stable
sampling clock. In addition to clocking the DAC latch, the DAC latch
strobe is also used to generate a processor interrupt to the DSP, which
indicates that the DAC is ready for a new input data word.

DSP

CLKO UT

A0-A11

IO M S

W R

D8-D23

tW P

tD WtW D E

tC W R

tA S W

tA W

tD H tD D R

tW W R

tW R A

Figure 10-6. ADSP-218x DSP Memory Write Timing
ADSP-218x DSP Hardware Reference 10-11

Interfacing to DSP Processors
The write process is thus initiated by the peripheral device asserting the
DSP interrupt request line. This indicates that the peripheral device is
ready to accept a new parallel data word (step 1). The DSP then places the
address of the peripheral device on the address bus (step 2) and asserts a
memory select line (DMS is shown here) (step 3). This causes the output of
the address decoder to assert the chip select input to the peripheral
(step 5). The write (WR) output of the DSP is asserted tASW ns after the
negative-going edge of the DMS signal (step 4). The width of the WR pulse is
tWP ns. Data is placed on the data bus (D) and is valid tDW ns before the
WR line goes high (step 6). The positive-going transition of the WR line is
used to clock the data on the data bus (D) into the external parallel mem-
ory (step 7). The data on the data bus remains valid for tDH ns after the
positive-going edge of the WR signal.

The following is a list of key requirements for a parallel peripheral device
write interface. The key specification is tWP, the write pulse width.

• Address decode delay plus peripheral chip select setup time must be
less than the address and memory select setup time tASW (0.325 ns
for the ADSP-2189M processor operating at 75 MHz).

• For zero wait-state access, input data setup time must be less than
tDW (2.65 ns for the ADSP-2189M processor operating at 75 MHz).
Otherwise, software wait states must be added or processor clock
frequency reduced.

• Input data hold time must be less than tDH (2.325 ns for the
ADSP-2189M processor operating at 75 MHz).

• The peripheral device must accept input write clock pulse width tWP
(3.65 ns minimum for the ADSP-2189M processor operating at
75 MHz). Otherwise, software wait states must be added or proces-
sor clock frequency reduced.
10-12 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
! All but the fastest peripheral devices require wait states to be added
due to their longer data access times.

The following equations show the key timing specifications for the
ADSP-2189M. Note that they are all related to the processor clock
frequency.

• tCK = Processor Clock Period (13.3 ns)

• tASW = Address and Memory Select Setup before WR Low = 0.25tCK –
3 ns minimum

• tDW = Data Setup before WR High = 0.5 tCK – 4 ns + # wait states x tCK

• tDH = Data Hold after WR High = 0.25 tCK – 1 ns

• tWP= WR Pulse Width = 0.5 tCK – 3ns + # wait states x tCK minimum

Another parallel device is the AD5340. It is a 12-bit 100 KSPS DAC with
a parallel data interface. It operates on a single +2.5 V to +5.5 V supply
and dissipates only 345 µW (+ 3V supply). A powerdown mode further
reduces the power to 0.24 µW.
ADSP-218x DSP Hardware Reference 10-13

Interfacing to DSP Processors
The AD5340 incorporates an on-chip output buffer that can drive the
output to both supply rails. The AD5340 allows the choice of a buffered
or unbuffered reference input. The device has a poweron reset circuit that
ensures that the DAC output powers on at 0 V and remains there until
valid data is written to the device. Figure 10-7 shows a block diagram of
the AD5340.The input is double buffered.

INPUT
REGISTER

DAC
REGISTER

12-BIT

DAC

POWERDOWN
LOGIC

IN
T

E
R

F
A

C
E

 L
O

G
IC

DB11

DB0

BUF

GAIN

CS

WR

CLR

LDAC

VREF

VOUT

PD GND

RESET

BUF

POWERON
RESET

Figure 10-7. AD5340 Parallel Input DAC
10-14 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
Table 10-2 compares the key interface timing specifications for the
ADSP-2189M DSP and the AD5340 DAC. Specifications for the
ADSP-2189M are given for a clock frequency of 75 MHz.

Note: Adding 2 wait states to the ADSP-2189M DSP increases tWP to 30.25 ns and tDW to 29.25 ns,

which is greater than t3 (20 ns) and t4 (5 ns), respectively.

Examining the timing specifications shown in Table 10-2 reveals that for
the timing between the devices to be compatible, two software wait states
must be programmed into the ADSP-2189M processor. This increases the
width of WR to 30.25 ns, which is greater than the minimum required by
the AD5340 write pulse width (20 ns). The data setup time of 5 ns for the
AD5340 is also met by adding two wait states. A simplified interface dia-
gram for the two devices is shown in Figure 10-8.

Table 10-2. Parallel Write Interface Timing Specification Comparison
between the ADSP-2189M DSP and AD5340 DAC

ADSP-2189M Processor (75 MHz) AD5340 DAC

tASW (Address and Data Memory Select Setup

Time before WR Low) = 0.325 ns minimum

t1 (CS to RD Setup Time) = 0 ns minimum

tWP (WR Pulse Width) = 3.65 ns + # wait states

x 13.3 ns minimum =30.25 ns minimum

t3 (WR Pulse Width) = 20 ns minimum

tDW (Data Setup before WR High) = 2.65 ns +

wait states x 13.3 ns minimum = 29.25 ns
minimum

t4 (DataValid to WR Setup Time) = 5 ns maxi-

mum

tDH (Data Hold after WR High) = 2.325 ns

minimum

t5 (DataValid to WR Hold Time) = 4.5 ns

minimum
ADSP-218x DSP Hardware Reference 10-15

Interfacing to DSP Processors
Parallel interfaces with other DSP processors can be designed in a similar
manner by carefully examining the timing specifications for all appropri-
ate signals for each device.

Serial Interfacing to DSP Processors
DSP processors that have serial ports, such as the ADSP-218x family, pro-
vide a simple interface to peripheral ADCs and DACs. Use of the serial
port eliminates the need for using large parallel buses to connect the
ADCs and DACs to the DSP.

IRQ

DMS

SAMPLIN G

CLOCK

D8-D19

ADSP-2189M

75 MHZ

LDAC

CS

DB0-DB11

WR

AD5340

DAC

Notes:
2 software wait states
Sampling c lock m ay come from the DSP

DSP

WR

Figure 10-8. AD5340 DAC Parallel Interface to ADSP-2189M
10-16 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
In order to understand serial data transfer better, we will first examine the
serial port operation of the ADSP-218x series. A block diagram of one of
the two serial ports (SPORTs) of the ADSP-218x is shown in Figure 10-9.

The transmit (TX) and receive (RX) registers are not memory mapped, but
they are identified by name in the ADSP-218x assembly language. For
SPORT0, the transmit and receive registers are named TX0 and RX0,
respectively. For SPORT1, these registers are named TX1 and RX1,
respectively.

TXn

TRANSMIT DATA

REGISTER

TRANSMIT SHIFT

REGISTER

COMPANDING

HARDWARE

(µ-LAW OR A-LAW)

RXn

RECEIVE DATA

REGISTER

SERIAL

CONTROL

INTERNAL

GENERATO R

RECEIVE SHIFT

REGIST ER

DT TFS SCLK RFS DR

DMD BUS

16

16

16

16

16

Polarity of TFS and RFS

is software programm able CLOCK

SERIAL

Figure 10-9. ADSP-218x Family Serial Port Block Diagram
ADSP-218x DSP Hardware Reference 10-17

Interfacing to DSP Processors
In the receiving portion of the serial port, the receive frame sync (RFS) sig-
nal initiates reception. The serial receive data (DR) from the external device
(ADC) is transferred into the receive shift register one bit at a time. The
negative-going edge of the serial clock (SCLK) is used to clock the serial
data from the external device into the receive shift register. When a com-
plete word has been received, it is written to the receive data register (RX),
and the receive interrupt for that serial port is generated. The receive data
register is then read by the processor.

Writing to the transmit data register (TX) readies the serial port for trans-
mission. The transmit frame sync (TFS) signal initiates transmission. The
value in the TX register is then written to the internal transmit shift regis-
ter. The data in the transmit shift register is sent to the peripheral device
(DAC) one bit at a time, and the positive-going edge of the serial clock
(SCLK) is used to clock the serial transmit data (DT) into the external
device. When the first bit has been transferred, the serial port generates
the transmit interrupt. The transmit data register can then be written with
new data, even though the transmission of the previous data is not
complete.

In the normal framing mode, the frame sync signal (RFS or TFS) is checked
at the falling edge of SCLK. If the framing signal is asserted, data is avail-
able (transmit mode) or latched (receive mode) on the next falling edge of
SCLK. The framing signal is not checked again until the word has been
transmitted or received.

In the alternate framing mode, the framing signal is asserted in the same
SCLK cycle as the first bit of a word. The data bits are latched on the falling
edge of SCLK, but the framing signal is checked only on the first bit. Inter-
nally-generated framing signals remain asserted for the length of the serial
word.

! The alternate framing mode of the serial port in the ADSP-218x is
normally used to receive data from ADCs and transmit data to
DACs.
10-18 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
The serial ports of the ADSP-218x family are extremely versatile. The TFS,
RFS, or SCLK signals can be generated from the ADSP-218x clock (master
mode) or generated externally (slave mode). The polarity of these signals
can be reversed with software, thereby allowing more interface flexibility.
The port also contains µ-law and A-law companding hardware for voice-
band telecommunications applications.

Serial ADC to DSP Interface

Figure 10-10 shows a timing diagram of the ADSP-2189M serial port
operating in the receive mode (alternate framing). The first negative-going
edge of the SCLK to occur after the negative-going edge of the RFS signal
clocks the MSB data from the ADC into the serial input latch. The pro-
cess continues until all serial bits have been transferred into the serial
input latch.

MSB BIT n LSB

ADC

SCLK

RFS IN

DR IN

tSC S

4 ns 7 ns

Alternate Framing M ode, ADC is Master

> >

tSCH tS C S

Figure 10-10. ADSP-2189M Serial Port Receive Timing
ADSP-218x DSP Hardware Reference 10-19

Interfacing to DSP Processors
The key timing specifications of concern are the serial data setup (tSCS)
and hold times (tSCH) with respect to the negative-going edge of the SCLK.
In the case of the ADSP-2189M, these values are 4 ns and 7 ns, respec-
tively. The latest generation ADCs with high speed serial clocks will have
no trouble meeting these specifications, even at the maximum serial data
transfer rate.

The AD7853/AD7853L is a 12 bit, 200/100 KSPS ADC which operates
on a single +3 V to +5.5 V supply and dissipates only 4.5 mW (+3 V sup-
ply, AD7853L). After each conversion, the device automatically powers
down to 25 µW. The AD7853/AD7853L is based on a successive approxi-
mation architecture and uses a charge redistribution (switched capacitor)
DAC. A calibration feature removes gain and offset errors.

Figure 10-11 shows a block diagram of the AD7853/AD7853L.

COMP

2.5 V

REFERENCE

CHARGE

REDISTRIBUTION
DAC

SAR + ADC

CONTROL

SERIAL INTERFACE/CONTROL REGISTER

CALIBRATION

MEMORY
AND CONTROLLER

AVDD AGND
AIN(+)

AIN(–)

REFIN/

REFOUT

CREF1

DVDD

DGND

CLKIN

CONVST

BUSY

AD7853L

BUF

CAL

AGND

SLEEP

SM1 SM2 SYNC DIN DOUT SCLK POLARITY

T/H

CREF2

Figure 10-11. AD7853/AD7853L ADC Serial Output
10-20 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
The AD7853 operates on a 4 MHz maximum external clock frequency.
The AD7853L operates on a 1.8 MHz maximum external clock frequency.
Figure 10-12 shows the timing diagram for AD7853L.

The AD7853/AD7853L ADCs have external mode pins, SM1 and SM2,
which configure the SYNC and SCLK signals as inputs or outputs. In the
examples shown in Figure 10-11 and Figure 10-12, the SYNC and SCLK sig-
nals are generated internally by the AD7853L.

The AD7853L serial clock operates at a maximum frequency of 1.8 MHz
(556 ns period). The data bits are valid 330 ns after the positive-going
edges of SCLK. This allows a setup time of approximately 330 ns minimum
before the negative-going edges of SCLK, which easily meets the
ADSP-2189M 4 ns tSCS requirement.

The hold-time after the negative-going edge of SCLK is approximately 226
ns, which again easily meets the ADSP-2189M 7 ns tSCH timing require-
ment. These simple calculations show that the data and RFS setup and
hold requirements of the ADSP-2189M are met with considerable margin.

DB15 DB0

SCLK

(O/P)

SYNC (O/P)

DB11

1 5 6 16

556 ns

330 ns M IN

226 ns

THREE-STATE THREE-STATE

DOUT (O/P)

Figure 10-12. AD7853L ADC Serial Output Timing
ADSP-218x DSP Hardware Reference 10-21

Interfacing to DSP Processors
Figure 10-13 shows the AD7853L interfaced to the ADSP-2189M and
connected in a mode to transmit data from the ADC to the DSP (alter-
nate/master mode).

The AD7853/AD7853L contains internal registers that can be accessed by
writing from the DSP to the ADC via the serial port. These registers are
used to set various modes in the AD7853/AD7853L as well as to initiate
the calibration routines. These connections are not shown in the diagram.

DR

RFS

SCLK

CLOCK

INPUT

4 MHz/1.8 MHz MAX

ADSP-2189M

75 M Hz

DSP
CLKIN

SCLK

DOUT

AD7853 /AD7853L

ADC

SYNC

SERIAL

PORT

SAMPLING

CLOCK

(OPTIONAL)
CONVST

Figure 10-13. AD7853/AD7853L ADC Serial Interface to ADSP-2189M
10-22 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
Serial DAC to DSP Interface

Interfacing serial input DACs to the serial ports of DSPs, such as the
ADSP-218x family, is also relatively straightforward and similar to the pre-
vious discussion regarding serial output ADCs. The details will not be
repeated here, but a simple interface example will be shown.

The AD5322 is a 12-bit, 100 KSPS dual DAC with a serial input inter-
face. It operates on a single +2.5 V to +5.5 V supply. Figure 10-14 shows a
block diagram of the AD5322.

Power dissipation on a +3 V supply is 690 µW. A powerdown feature
reduces this to 0.15 µW. Total harmonic distortion is greater than 70 dB
below full scale for a 10 kHz output.

 I

N
T

E
R

F
A

C
E

 L
O

G
IC

INPUT

REGISTER A

DAC STRING

DAC A

RESISTOR

NETWORK

INPUT DAC STRING

DAC B

RESISTOR

NETWORK

POW ER-DO WN

LOGIC

SYNC

SCLK

DIN

VDD VREFA
POW ERON

RESET

LDAC VREFBGND

AD5322

VOUTAREGISTER A

VOUTB
REGISTER B REGISTER B

Figure 10-14. AD5322 Dual DAC
ADSP-218x DSP Hardware Reference 10-23

Interfacing to DSP Processors
The references for the two DACs are derived from two reference pins (one
per DAC). The reference inputs may be configured as buffered or unbuf-
fered inputs. The outputs of both DACs may be updated simultaneously
using the asynchronous LDAC input. The device contains a poweron reset
circuit that ensures that the DAC outputs power up to 0 V and remain
there until a valid write to the device takes place.

Data is normally input to the AD5322 via the SCLK, DIN, and SYNC pins
from the serial port of the DSP. When the SYNC signal goes low, the input
shift register is enabled. Data is transferred into the AD5322 on the falling
edges of the following 16 clocks. Figure 10-15 shows a typical interface
between the ADSP-2189M and the AD5322.

DT

TFS

SCLK

ADSP-2189M

75 M Hz

SCLK

DIN

AD5322

DAC

SYNC

SERIAL

PORT

DSP

Figure 10-15. AD5322 DAC Serial Interface to ADSP-2189M
10-24 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
Notice that the clocks to the AD5322 are generated from the
ADSP-2189M clock. It is also possible to generate the SCLK and SYNC sig-
nals externally to the AD5322 and use them to drive the ADSP-2189M.
The serial interface of the AD5322 is not fast enough to handle the
ADSP-2189M maximum master clock frequency. However, the serial
interface clocks are programmable and can be set to generate the proper
timing for fast or slow DACs.

The input shift register in the AD5322 is 16 bits wide. This 16-bit word
consists of four control bits followed by 12 bits of DAC data. The first bit
loaded determines whether the data is for DAC A or DAC B. The second
bit determines if the reference input will be buffered or unbuffered. The
next two bits control the operating modes of the DAC (normal, power-
down with 1 kΩ to ground, powerdown with 100 kΩ to ground, or
powerdown with a high impedance output).

Interfacing I/O Ports, Analog Front Ends, and
Codecs

Since most DSP applications require both an ADC and a DAC, I/O Ports
and codecs have been developed that integrate the two functions on a sin-
gle chip as well as provide easy-to-use interfaces to standard DSPs. These
chips also go by the name of analog front ends (AFEs).

An example of an analog front end is the AD73322. This device is a dual
analog front end with two 16-bit ADCs and two 16-bit DACs and is capa-
ble of sampling at 64 KSPS. It is designed for general purpose
applications, including speech and telephony using sigma-delta ADCs and
sigma-delta DACs. Each channel provides 77 dB signal-to-noise ratio over
a voiceband signal bandwidth.
ADSP-218x DSP Hardware Reference 10-25

Interfacing to DSP Processors
Figure 10-16 shows a functional block diagram of the AD73322.

The ADC and DAC channels feature programmable input/output gains
with ranges of 38 dB and 21 dB, respectively. An on-chip voltage refer-
ence is included to allow single supply operation on +2.7 V to +5.5 V.
Power dissipation is 73 mW with a +3 V supply.

The sampling rate of the codecs is programmable with four separate set-
tings of 64 kHz, 32 kHz, 16 kHz, and 8 kHz when operating from a
master clock of 16.384 MHz.

Σ ∆ Σ ∆ Σ ∆ Σ ∆ ADC

CHANNEL 1

Σ ∆ Σ ∆ Σ ∆ Σ ∆ DAC

REFERENCE
SERIAL

PORT

VFBP1

VINP1

VINN1

VFBN1

VFBP2

VINP2

VINN2

VFBN2

REFOUT

REFCAP

VOUTP1

VOUTN1

VOUTP2

SDI

SDIFS

SCLK

SE

RESET

MCLK

SDOFS

SDO

AVDD1 AVDD2

AGND1 AGND2 DGND

CHANNEL 1

CHANNEL 2

CHANNEL 2

Σ ∆ Σ ∆ Σ ∆ Σ ∆ ADC

Σ ∆ Σ ∆ Σ ∆ Σ ∆ DAC

DVDD

VOUTN2

Figure 10-16. AD73322 Codec with Serial Interface
10-26 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
The serial port allows easy interfacing of single or cascaded devices to
industry standard DSP engines, such as the ADSP-218x family. The
SPORT transfer rate is programmable to allow interfacing to both fast and
slow DSP engines. Figure 10-17 shows the AD73322 interface to the
ADSP-218x family.

The SE pin (SPORT enable) may be controlled from a parallel output pin
or a flag pin, such as FL1; or, where SPORT powerdown is not required, it
can be permanently strapped high using a suitable pull-up resistor. The
RESET pin may be connected to the system hardware reset, or it may be
controlled with another flag bit.

SDIFS

SDI

SCLK

SDO

SDOFS

RESET

SE

TFS

DT

SCLK

DR

RFS

FL0

FL1

ADSP-218x

DSP

AD73322

CO DEC

SE

SCLK

SDOFS

SDO

SDIFS

SDI

ADC SAM PLE WORD, DEVICE 2

CLOCK

16.384 M Hz

ADC SAM PLE WORD, DEVICE 1

DAC DATA WORD, DEVICE 2 DAC DATA WORD, DEVICE 1

Figure 10-17. AD73322 Interface to ADSP-218x Family Processors
ADSP-218x DSP Hardware Reference 10-27

Interfacing to DSP Processors
In the program mode, data is transferred from the DSP to the AD73322
control registers to set up the device for desired operation. Once the
device has been configured by programming the correct settings to the
various control registers, the device may exit the program mode and enter
the data mode. The dual ADC data is transmitted to the DSP in two
blocks of 16-bit words. Similarly, the dual DAC data is transmitted from
the DSP to the AD73322 in two blocks of 16-bit words. Simplified inter-
face timing is also shown in Figure 10-17.

The AD73422 is the first product in the dspConverter™ family of prod-
ucts that integrate a dual analog front end (AD73322) and a DSP
(52 MIPS ADSP-2185L/ADSP-2186L). The entire functionality of the
dual-channel codec and the DSP fits into a small, 119-ball 14 mm by 22
mm plastic ball grid array (PBGA) package. The obvious advantage of this
size package is the saving of circuit board real estate. ADC and DAC sig-
nal-to-noise ratios are approximately 77 dB over voiceband frequencies.

The AD74222-80 integrates 80 K bytes of on-chip memory configured as
16 K words (24-bit) of program RAM, and 16 K words (16-bit) of data
RAM. The AD73422-40 integrates 40 K bytes of on-chip memory config-
ured as 8 K words (24-bit) of program RAM, and 8 K words (16-bit) of
data RAM. Powerdown circuitry is also provided to meet the low power
needs of battery operated portable equipment. The AD73422 operates on
a +3 V supply and dissipates approximately 120 mW with all functions
operational.

The following summarizes the features of the ADSP73422
dspConverter™:

• Complete dual codec (AD73322) and DSP
(ADSP-2185L/ADSP-2186L)

• 14 mm by 22 mm BGA package

• +3 V single-supply operations, 73 mW power dissipation

• Powerdown mode
10-28 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
• Codec

• Dual 16-bit sigma-delta ADCs and DACs

• Data rates: 8, 16, 32, 64 KSPS

• 77 dB SNR

• DSP

• 52 MIPS

• ADSP-218x code compatible

• 80 K byte and 40 K byte on-chip memory options

High-Speed Interfacing
With the advent of ever faster DSP clock rates and newer architectures it
has become possible to acquire and process high speed signals. The pro-
grammability of DSPs makes it possible to run different algorithms on the
same hardware while providing different system functionality.

An example of high-speed ADC is the AD9201. It is a dual-channel,
10-bit, 20 MSPS ADC that operates on a single +2.7 V to +5.5 V supply
and dissipates only 215 mW (+3 V supply). The AD9201 offers closely
matched ADCs needed for many applications, such as I/Q communica-
tions. Input buffers, an internal voltage reference and multiplexed, digital,
output buffers make interfacing to the AD9201 very simple.

The companion part to the AD9201 ADC is the AD9761 DAC. The
AD9761 is a dual, 10-bit, 20 MSPS per channel DAC operating on a sin-
gle +2.7 V to +5.5 V supply and dissipating only 200 mW (+3 V supply).
A voltage reference, digital latches and 2x interpolation make the AD9761
useful for I/Q transmitter applications.
ADSP-218x DSP Hardware Reference 10-29

Interfacing to DSP Processors
Figure 10-18 shows a simplified ADSP-218x system connected to the
AD9201 ADC and the AD9761 DAC. The ADC and DAC both have
parallel interfaces connected to the external port of the DSP.

Due to the simple interface between the DSP processor and the AD9201
and AD9761, shown in Figure 10-18, a memory select signal is not
required. When performing reads from the ADC, only the RD signal is
required to assert the chip select of the AD9201. Writes require only the
use of the WR signal to the AD9761. If additional peripherals are to be
interfaced to the DSP's external bus, some external decoding logic would
be required.

AD9201

ADC

D0-D9

CLOCK

SELECT

CHIP-SELECT

ADSP-218X

SCLK

A0

RD

WR

AD9761

DAC

CLOCK

WRITE

SELECT

DUAL 10-BIT
20 MSPS ADCs

DUAL 10-BIT
20 MSPS DACs

D0-D9

D8-D17

DSP

Figure 10-18. AD9201 ADC and AD9761 DAC Interface to ADSP-218x
10-30 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
DSP System Interface
Figure 10-19 shows a simplified ADSP-2189M system using the full
memory mode configuration with two serial devices, a byte-wide
EPROM, and optional external program and data overlay memories.

Programmable wait state generation allows the fast processor to connect
easily to slower peripheral devices. The ADSP-2189M also provides four
external interrupts, seven general-purpose input/output pins, and two
serial ports.

ADDR

DATA

BMS

WR

RD

IOMS

PMS

DMS

CMS

14

24

22
14

8 ADDR

DATA

CS

8

11

16
ADDR

DATA

CS

14

24
ADDR

DATA

BYTE

MEMORY

I/O SPACE

(PERIPHERALS)

2048 LOCATIONS

OVERLAY

MEMORY

TWO 8 K PM SEG MENTS

1/2 X CLOCK
OR CRYSTAL

CLKIN

XTAL

SERIAL
DEVICE

5

SERIAL

DEVICE

5

SPORT1

SPORT0

ADSP-2189M

IRQ x
4

7 PFx/
MODE x

BR

BG

BGH

PWD

PWDACK

INTERRUPTS

PROGRAM MABLE

 IO PINS

BUS/REQ UEST/
GRANT/HUNG

POWER DOW N INPUT

POWER DOWN OUTPUT

TWO 8 K DM SEGMENTS

Figure 10-19. ADSP-2189M System Interface (Full Memory Mode)
ADSP-218x DSP Hardware Reference 10-31

Interfacing Examples
SPORT1 can alternately be configured as two additional interrupts (IRQ0
and IRQ1), a general-purpose input pin (FI), a general purpose output pin
(FO), and the serial clock (SCLK). This alternate configuration provides a
total of six external interrupts (excluding the non-maskable powerdown
interrupt signal, which can also be used as an external interrupt), eight
programmable I/O pins, one dedicated input pin, one dedicated output
pin, and one serial port.

The ADSP-2189M can also be operated in the Host Memory mode,
which allows access to the full external data bus but limits addressing to a
single address bit. Additional system peripherals can be added in the Host
Memory mode through the use of external hardware to generate and latch
address signals.

Interfacing Examples
This section provides some hardware examples of circuits that can be
interfaced to the ADSP-218x DSP serial ports or DMA ports. As with any
hardware design, it is important that timing information be carefully ana-
lyzed. Therefore, the appropriate ADSP-218x processor data sheet should
be used in addition to the information presented in this chapter.

Serial Port to Codec Interface
The ADSP-218x family processors may be interfaced, via the serial ports,
to most common codec’s. An example is shown Figure 10-20, using the
AD73311 codec. Up to eight, AD73311 codec’s, may be connected in a
cascade configuration to obtain multiple channel operation.

When two or more codec’s are connected in a cascade configuration, it is
necessary to synchronously enable the serial ports and bring all codecs out
of reset simultaneously to ensure correct operation of the serial interface.
Figure 10-20 illustrates this process.
10-32 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
For a single AD73311 codec, the D-latches are not required. Therefore,
the codec RESET input could be connected to the system RESET signal, and
the serial port enable could be connected directly to an output flag pin
(FLn) on the DSP.

Please refer to the AD73311 data sheet for further application details.

RESET

RESET

TFS

DSP

ADSP-2189M

FL0

NC

MCLK

D Q

Q

D Q

Q

HC74

VDD

VOUT

SE

VIN SDIFS

SDI

SCLK

SDO

SDOFS

VOUT

SE

VIN
SDIFS

SDI

SCLK

SDO

SDOFS

SDIFS

SDI

SCLK

SDO

SDOFS
RESET

VOUT

SE

VIN

VDDEXT VDDINT

VCC

RESET

SE

3.3V

3.3V

3.3V

2.5V

CO DEC #1

AD73311

RESET

SE

CO DEC #2

AD73311

CO DEC #8

AD73311 M CLK

FL1

SCLK

DT

DR

RFS

S
P

O
R

T
0

NC

Figure 10-20. AD7311 Codec(s) to ADSP-218x DSP Serial Interface
ADSP-218x DSP Hardware Reference 10-33

Interfacing Examples
Serial Port to ADC Interface
This section provides the following two examples of a serial port to ADC
interface:

• ADSP-218x DSP SPORT to AD7475/95 ADC interface

• ADSP-218x DSP SPORT to AD7888 ADC interface

ADSP-218x DSP to AD7475/95 ADC Interface

The ADSP-218x DSP SPORT can be interfaced to the AD7475/95 ADC,
as shown in Figure 10-21. Note that the RFS pin is configured as an out-
put on the DSP and is used to initiate conversion in the ADC. It is also
used to determine the sample rate.

SCLK

DR

DT

RFS

TFS

SCLK

SDATA

CS

DSP

ADSP-218MADC

AD7475/95

VINA

VDRIVE

3.3V

GND

VREF

GND

2.5V

VDD

5V

M AX 1MS/s

S
P

O
R

T
0

VDDEXT VDDINT

Figure 10-21. ADSP-218x DSP to AD7475/95 ADC Serial Interface
10-34 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
Figure 10-22 shows the serial timing for the ADSP-218x DSP interface to
the AD7475/95 ADC.

Using a DSP CLKIN frequency of 36 MHz, the CLKOUT frequency will be 72
MHz. For the correct serial interface timing, the DSP SPORT
Control registers should be set up as follows:

Note that the DSP RFS frame sync output is used to initiate conversion
and set the sample rate. For some applications, it may be desirable to use a
more stable frequency source, such as an independent clock. In this case,
the external clock would be an input to both the CS pin on the ADC and
the DSP RFS frame sync pin.

SPORTn Control Register, DM (0x3FF6): 0x7DCF

SPORTn SCLKDIV Register, DM (0x3FF5): 0x0001

SPORTn RFSDIV Register, DM (0x3FF4): 0x0011

CS (RFS)

SDATA 0 0 0 0 M SB LSB

SCLK

0

1 2 3 4 5 16 17 18 1

ONE COM PLETE SERIAL FRAME – M AX SAM PLE RATE 1M S/s

– SCLK=18M Hz

Figure 10-22. ADSP-218x DSP to AD7475/95 ADC Serial Interface
Timing
ADSP-218x DSP Hardware Reference 10-35

Interfacing Examples
ADSP-218x DSP to AD7888 ADC interface

Using the 8-channel AD7888 ADC, it is possible to sample eight indepen-
dent analog inputs. Figure 10-23 shows the serial interface used. Note that
there is also a data line from the DSP to the ADC. This data line is used to
send channel select and power management information to configure
internal ADC registers.

SCLK

DR

DT

RFS

TFS

SCLK

DOUT

DIN

CS

DSP

ADSP-2189M

ADC

AD7888

8Ch, 12-Bit, 125KS/s

AIN1

AIN8

3.3V

AGND AGND

VREF

GND

2.5V

3.3V

VDD

VDDEXT VDDINT

S
P

O
R

T
0

Figure 10-23. ADSP-218x DSP to AD7888 ADC Serial Interface
10-36 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
Figure 10-24 shows the serial interface timing for the ADSP-218x DSP to
AD7888 ADC Interface.

Using a DSP CLKIN frequency of 36 MHz, the CLKOUT frequency will be 72
MHz. For the correct serial interface timing, the DSP SPORT
Control registers should be set up as follows:

Note that the DSP RFS frame sync output is used to initiate conversion
and set the sample rate. For some applications, a more accurate clock may
be needed to set the sample rate and minimize jitter. In this case, the
external clock would be an input to both the CS pin on the ADC and the
DSP RFS frame sync pin.

SPORTn Control Register, DM(0x3FF6): 0x7DCF

SPORTn SCLKDIV Register, DM (0x3FF5): 0x0011

SPORTn RFSDIV Register, DM (0x3FF4): 0x000F

SCLK

CS (RFS)

DIN

DOUT

DO N TC ZE RO AD D R 2 AD D R 1 AD D R 0 RE F PM 1 PM 0

0 0 0 0 MS B LS B

DO N TC

0

1 2 3 4 5 6 16 1

ONE COM PLETE SERIAL FRAME. M AX SAM PLE RATE, 135kS/s: SCLK=2MHz M AX

Figure 10-24. ADSP-218x DSP to AD7888 ADC Serial Interface Timing
ADSP-218x DSP Hardware Reference 10-37

Interfacing Examples
Parallel Port to ADC Interface
The ADSP-218x DSPs allow you to interface an ADC to a parallel port.
Figure 10-25 shows an interface between the ADSP-218x DSP and the
AD7899 ADC.

ADDRESS

DECODE R

A0

A10

IOMS

RD

IRQ2

FL0

D8

D9

D10

D23

CS

RD

BSY/EOC

CONVST

D0

D13

ADC

AD7899

VINA

VINB

SELECT 3

WAIT STATES
ADDRESS BUS

3.3V

GND OPGND GND

5V

2.5V

400KS/s M AX

EXT CLOCK

14-BIT DA TA BUS

VDD

VDDEXT VDDINT

ADSP-2189M

VDRVE

VREF

Figure 10-25. ADSP-218x DSP to AD7899 ADC Parallel Interface
10-38 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
The CONVST signal can be generated by the ADSP-218x DSP or from an
external clock source. Figure 10-25 shows the ADC CS being generated by
a logical decode of the IOMS and the ADSP-218x DSP address bus. The
AD7899 ADC is mapped into the 2 K IO space of the ADSP-218x DSP.

The AD7899 BSY/EOC line provides an interrupt to the ADSP-218x DSP
when the conversion is completed. The converted digital word can be read
from the AD7899 using a read operation.

Please note that in this example the 14-bit data from the AD7899 is MSB
aligned on the 16-bit external data bus to preserve the sign information of
the input data. Therefore, data pins D8 and D9 are pulled to ground since
they are unused.

! The DSP should be programmed to provide the minimum number
of wait states required by the AD7899, three in this example.

The AD7899 is read using the following instruction:

MR0 = dm(ADC)

Where MR0 is the ADSP-218x MR0 register and ADC is the AD7899 IO
address.
ADSP-218x DSP Hardware Reference 10-39

Interfacing Examples
Serial Port to DAC Interface
Figure 10-26 shows an example of how to connect a three-wire serial
interface between the ADSP-218x DSP SPORT and a typical DAC
(AD5320).

The associated timing diagram, shown in Figure 10-27, is very similar to
the Motorola SPI interface, except that it has been extended to a 16-bit
word size to accommodate the AD5320 DAC. The maximum SCLK rate
supported by the AD5320, when using a 3.3 V supply, is 20 MHz.

DT

TFS

SCLK

RFS

DR

DIN

SYNC

SCLK

3.3V

GND GND

2.5V

MAX SCLK 20MHz

DSP

ADSP-2189M

VDD

VDDEXTVDDINT

DAC

AD5320

VOUT

S
P

O
R

T
0

3.3V

Figure 10-26. ADSP-218x DSP to AD5320 DAC Serial Interface
10-40 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
By adding the minimum inactive time for the SYNC pulse of 33 ns, a sam-
ple rate over 1 MS/s can be supported.

The SPORT0 interface control registers in the ADSP-218x DSP should
be programmed with the following data:

This data programs the SCLK to 18.75 MHz, assuming that the
ADSP-218x DSP is operating with a CLKOUT frequency of 75 MHz. The
data also sets the TFS to alternate inverted mode (active low TFS signal)
and the word length to 16-bits. The sample rate is set by the frequency at
which data is written to the transmit buffer, but in no case should the rate
exceed –1.1 MHz.

SPORT0 Control Register, DM(0x3FF6): 0x4E8F

SPORT0 SCLKDIV Register, DM(0x3FF5): 0x0001

System Control Register, DM(0x3FFF): Set Bit-12 to enable SPORT0

DIN (DT) 0 0 0 0 DB 11 DB 0 0

SCLK

1 2 3 4 5 16 17 N 1

SYNC (TFS)

ONE COM PLETE SERIAL FRAME – M AX SAM PLE RATE 1M S/s

– SCLKM AX=20M Hz

Figure 10-27. ADSP-218x DSP to AD5320 DAC Serial Interface Timing
ADSP-218x DSP Hardware Reference 10-41

Interfacing Examples
IDMA Interface to a Host Processor
The ADSP-218x family processors are ideal candidates for use in co-
processing systems.Their extensive DMA and peripheral interface features
allow the ADSP-218x processors to function with minimal external sup-
port circuitry. In order to realize the highest possible performance in a
co-processor system, efficient host-DSP communication is vital.

This section shows an example hardware and software interface between
the ADSP-218x processor’s Internal DMA (IDMA) port and a microcon-
troller. As each specific system design has its own requirements and
challenges, this section does not presume to provide the only possible
solution. Rather, it is meant to provide the system designer a flexible
framework of ideas that can be tailored to meet individual system
requirements.

The devices selected for this example are the ADSP-2189 processor and
the Motorola M68300 family of microcontrollers. The ADSP-2189 is
ideal in such a system because of its 192 K bytes of on-chip RAM (config-
ured as 32 K words of on-chip Program Memory RAM and 48 K words of
on-chip Data Memory RAM) and its IDMA interface. For a lower cost
system, an ADSP-218x family member with less internal memory could be
used. The popular Motorola M68300 family of microcontrollers is a good
choice as a host because it provides a powerful and flexible bus interface
that is easily adaptable to a coprocessing system.

IDMA Operation

External devices can gain access to the internal memory of any of the
ADSP-218x family members through the DSP’s IDMA port. Host proces-
sors accessing the ADSP-218x through IDMA can treat the DSP as a
memory-mapped slave peripheral. They have access to all of the DSP’s
internal Data Memory (DM) and Program Memory (PM) except for the
32 memory-mapped control registers, which reside at addresses
DM(0x3FE0) through DM(0x3FFF).
10-42 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
The IDMA port consists of a 16-bit multiplexed address /data bus
(IAD16:0), a select line (IS), address latch (IAL), read (IRD), write (IWR),
and acknowledge (IACK) signals. The host processor is responsible for initi-
ating all data transfers. A typical transfer sequence is shown in
Figure 10-28.

Host starts IDMA transfer.

Host checks IACK control line
to see if the DSP is "busy".

Host uses IS and IAL control lines to
latch either the DMA starting address
(IDMAA) or the PM /DM OVLA Y
selection into the DSP's IDMA control
registers. If bit 15=1, the value of bits
7:10 represent the IDMA overlay. Bits
14:8 must be set to 0. If Bit 15=0, the
value of bits 13:0 represent the start-
ing address of internal memory to be
accessed and bit 14 reflects PM or
DM for access.

Host uses IS and IRD (or IWR) to
read (or w rite) DSP internal m em ory
(PM or DM).

Host ends IDMA transfer.

Host checks IACK line to see if the
DSP has completed the previous
IDMA operation.

Continue?

Yes

No

Figure 10-28. IDMA Transfer Sequence
ADSP-218x DSP Hardware Reference 10-43

Interfacing Examples
The DSP memory address and destination memory type bit field is loaded
into the IDMA Control register, shown in Figure 10-29.

This register contains the 14-bit internal memory address, along with a bit
to specify the type of transfer: 24-bit Program Memory opcodes or 16-bit
Data Memory data. The IDMAA starting address can be initialized by
either the DSP or by a host processor.

15 14 13 12 11 10

IDMA Overlay

DM(0x3FE7)

9 8 7 6 5 4 3 2 1 0

ID PMOVLAY

0 000 0 0 0 0

ID DMOVLAY

Reserved
Set to 0

0 0 0 0 0 0

15 14 13 12 11 10 9 7 5 3 1

IDMA Control

DM(0x3FE0)

IDMAA
Starting address

IDMAD

Destination m emory type:

0=PM

1=DM

8 6 4 2 0

0 U U U U U U U U U U U U U U U

0

Note: U=Undefined at reset.

0

Figure 10-29. IDMA Control Registers
10-44 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
The host can initialize the IDMAA starting address by performing an
address latch cycle. An address latch cycle is defined by the host asserting
the ALE signal and then transferring a 15-bit (14 address bits plus 1 desti-
nation memory type bit) value on the IAD pins. If Bit 15 is set to 0, IDMA
latches the address. If Bit 15 is set to 1, IDMA latches into the IDMA
Overlay register. (Note that the host cannot read the latched address
(IDMAA) back.)

The IDMA Overlay register, as shown in Figure 10-29 on page 10-44, is
memory mapped at address DM (0x3FE0).

! The IDMA Overlay register does not apply to the ADSP-2181,
ADSP-2183, ADSP-2184, ADSP-2185, and ADSP-2186 proces-
sors due to their smaller amounts of on-chip memory.

To streamline the transfer of large segments of opcodes or data, an address
latch cycle does not need to be performed for each IDMA access. Instead,
once latched, the address is automatically incremented after every IDMA
word transfer. Since the IDMA port has a 16-bit bus, 24-bit transfers
require two host accesses. The first access transfers the most significant 16
bits; the second access transfers the least significant 8 bits, right justified,
with a zero-filled upper byte. IDMA address increments occur after the
entire 24-bit word has been transferred. (For more information about the
IDMA port see the Data Sheet for the selected DSP.)

Host Interface Hardware Design

The IDMA port of the ADSP-218x processor is mapped into two loca-
tions in the microcontroller’s external memory space: one location is used
by the microcontroller to set the DSP memory address it wishes to access;
the other location is used when transferring data and instruction
information.
ADSP-218x DSP Hardware Reference 10-45

Interfacing Examples
Motorola MC6833x Overview

The Motorola MC6833x Family of microprocessors use a System Integra-
tion Module (SIM) to communicate to parallel peripherals. The SIM
incorporates separate address and data busses, along with multiple mem-
ory select lines and strobe lines. The SIM is common (with minor
changes) to all MC6833x processors, and material presented in this sec-
tion should apply to all processors in the family.

Schematic Explanation

Figure 10-30 provides a schematic showing the glue logic between a
Motorola MC68332 processor and the ADSP-2189M processor using
address decoding. Figure 10-31 provides a schematic showing the glue
logic between a Motorola MC68332 processor and the ADSP-2189M
processor using a chip select.

QS3384

BEA

BEB

BUSB[0]

ADSP-2189M

IAD[0:15]

IACK

IS

IW R

IRD

IAL

MC68332

DS

DSA CK0

PF1

R/W

ADDR[13]

LO

LO

1 2

1 2

1

2
3

1

2
3

1 2

1

2
3

DSA CK1

ADDR[12]

ADDR[0]

DATA[5]

BUSB[0]

BUSB[1]

BUSB[1]

BUSB[1]
BUSB[1]

BUSB[1]

BUSB[1]

BUSB[1]

BUSB[1]

BUSB[1]

BUSB[1]

Figure 10-30. Glue Logic between the MC68332 and the ADSP-2189M
Using Address Decoding
10-46 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
Minimal logic is required to connect the external bus of the MC6833x to
the IDMA port. All logic necessary for this interface is programmed into a
single GAL20V8B programmable logic device. The 16 data lines from the
MC6833x are connected via a logic level translator to the ADSP-2189’s
IAD pins. The MC6833x uses this bus to transmit the DSP memory
address, as well as, transfer data to and from the DSP processor.

The IACK signal from the DSP is routed to both the DSACK1 pin and a pro-
grammable flag pin on the MC6833x. The DSACK1 pin signals the end of a
memory transfer cycle for the MC6833x, while the programmable flag pin
is used by the MC6833x to check IACK status prior to initiating a transfer.

LO

LO

U4A

74LS32

1

2
3

U7A

74LS04

1 2

U9A

74LS32

1

2
3

MC68332

DS

DSACK0

PF1

R/W

CS7

DSACK1

ADDR[1]

DATA[0:5]

QS3384

BEA

BEB

BUSB[0]

ADSP-2189M

IAD[0:15]

IACK

IS

IW R

IRD

IAL

BUSB[0]

BUSB[1]

BUSB[1]

BUSB[1]
BUSB[1]

BUSB[1]

BUSB[1]

BUSB[1]
BUSB[1]

BUSB[1]

BUSB[1]

Figure 10-31. Glue Logic Between the MC68332 and the ADSP-2189M
Using a Chip Select
ADSP-218x DSP Hardware Reference 10-47

Interfacing Examples
Listing 10-1 on page 10-55 shows the microcontroller downloader code,
which checks for a low level of the flag prior to any transfer.

The microcontroller’s address pin A1 is connected directly to the ALE pin
of the IDMA port. To begin a transfer, the microcontroller must first ini-
tialize the DSP’s IDMAA register through an address latch cycle. This is
accomplished by writing the DSP memory address that the microcontrol-
ler wants to access to address 0xbbb2 in the microcontroller’s memory
space.

Address pin A1 is used because it is the least significant address pin used by
the microcontroller during 16-bit word transfers. You can assign the base
address at which the ADSP-2189 IDMA port resides (in the MC6833x's
external memory map) in two different ways:

• Using the MC6833x’s address lines A12 and A13 in conjunction with
the microcontroller’s DS signal

• Using one of the MC6833x Chip Select pins

These signals (A12, A13, DS, CS7) are logically combined so that the IDMA
port's IS signal is asserted (low) when the MC6833x's DS pin is asserted
(low), A12 is low and A13 is high. With this combination, the IDMA port
can be accessed in the microcontroller’s memory space at addresses
0x2xxx, 0x6xxx, 0xaxxx, and so on. In the example shown in Figure 10-30
on page 10-46, we use address 0x2000 for data transfers and 0x2002 for
IDMA address transfers. Tighter assignment of addresses can be accom-
plished through the use of additional address lines in the IS logic.

The final IDMA control lines that need to be driven by the MC68332 are
IRD (IDMA Read) and IWR (IDMA Write). Since the microcontroller has
only a single, multiplexed R/W (Read/Write) line, the R/W line is inverted
and then routed to IRD to generate the IDMA read signal. The IDMA
write signal, IWR, is the OR’ed combination of the microcontroller’s R/W
line, and address line 2. This logic is necessary to insure that IWR stays high
during an IDMA address latch cycle.
10-48 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
System Design Issues

The physical hardware interface between the microcontroller and DSP is
just the enabling step in a DSP-based co-processing system. System
start-up and host-DSP communication issues must be planned for ahead
of time and adequate provisions for these issues should be included into
both the microcontroller’s and the DSP’s firmware.

Booting the DSP

The IDMA port on the DSP can be used to boot load the DSP on pow-
erup. This eliminates the need for a separate EPROM for the DSP. On the
ADSP-2189, booting is controlled through the use of the Mode [A,B,C,D]
pins. Booting through the IDMA port is enabled by holding the Mode B, D
pin low, and the Mode A,C pin high. With this signal combination, upon
deassertion of the RESET signal, the DSP does not activate its external
address bus to access an EPROM. Instead, the DSP expects a host to begin
IDMA transfers to fill its internal Data Memory and Program Memory.
This process consists of the host performing standard IDMA instruction
and data transfers.

Booting is terminated when the DSP restart vector at DSP Address
PM(0x0000) is written. An efficient boot loading sequence would consist
of the host filling the DSP’s internal Program Memory, starting at loca-
tion PM(0x0001), and using the automatic address increment feature on
the IDMA port to speed the transfer of code block in ascending address
order. The host can then initialize Data Memory.
ADSP-218x DSP Hardware Reference 10-49

Interfacing Examples
When all initialization is complete, the host should then initialize the
DSP’s restart vector. Then, the DSP program execution commences. This
booting process is shown in Figure 10-32.

Latch Address
(PM(0x0001)

Download First
PM Segm ent

Download Additio nal
PM Segm ents*

Download DM
Segments**

Latch Address
(PM(0x0000)

Download
Restart Vector

Each segm ent download requires
its own address latch cycle.

DM segm ents can be downloaded first

 or interm ixed between PM segm ents.

*

**

Figure 10-32. IDMA Booting Process
10-50 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
Generating Boot Code

The ADSP-218x processors operate on 24-bit instruction opcodes. The
IDMA port can only accept 16-bit values. To transfer instruction opcodes
through the IDMA port, the most significant 16 bits are transferred first.

The DSP's IDMA boot files are produced by the ADSP-218x family
PROM Splitter, elfspl21.exe. The PROM Splitter command line
switch, -idma, is used to generate an ASCII text output file that is suitable
for booting an ADSP-2181, ADSP-2183, ADSP-2184, ADSP-2185, or
ADSP-2186 processor. An additional command line switch, -218x,
enables support for IDMA booting for the ADSP-2187, ADSP-2188, and
ADSP-2189 processors, which have additional on-chip memory overlay
regions for booting via the IDMA port.

The output file contains a series of IDMA transfer records, each starting
with a count (of 16 bit words), an address (consisting of the 14 bit inter-
nal address (IDMAA) and the 1 bit IDMAD), to be written to the IDMA
Control register. When using the PROM Splitter's -218x command line
switch, an additional address word, which represents the IDMA overlay
page, is included in the IDMA image file, immediately after the IDMA
control word. Each word is expressed as four characters, which represent a
16-bit value in hexadecimal format. The data is displayed as one word per
line, as follows:

00A8 <—— count value
0001 <—— IDMA control word
8000 <—— IDMA OVERLAY control word (218x)
0001 <—— First Opcode (16 bit MSB), (count -2)
0002 <—— First Opcode (8 bit LSB), (count -3)
0001 <—— Second Opcode (16 bit MSB), (count -4)
0002 <—— Second Opcode (8 bit LSB), (count -5)
: :
: :
: :
: :
5678 <—— Last Opcode (16 bit MSB), (count =1)
ADSP-218x DSP Hardware Reference 10-51

Interfacing Examples
0090 <—— Last Opcode (8 bit LSB), (count =0)
: :
: : <—— additional PM or DM Segments
: :
FFFF <—— End-of-module specifier

Host Code Generation Downloading Issues

In order to utilize the data file produced by the PROM Splitter program,
the microcontroller needs to be programmed to understand the given for-
mat. The PROM Splitter program produces a IDMA image file that can
be initialized somewhere in the microcontroller’s memory space.
Figure 10-33 shows the format of this image file.

IDMA Word Count

IDM A Starting Address
(IDM A Contro l Register)

IDM A Overlay Control Word

IDM A data word 1

IDM A data word 2

.

.

.

IDM A data w ord n

Figure 10-33. IDMA Image File Format
10-52 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
The first element read from the image file is the number of 16-bit words
(IDMA Word Count) to be transferred to the DSP (remember that each
24- bit PM opcode counts as two 16-bit words). This value is placed in a
data register and can be used as a loop counter to control the download
function.

The next value in the IDMA image file is the DSP starting address (IDMA
Starting Address), which is the 15-bit value that represents the starting
address of the code or data segment that will be transferred during the
IDMA access. This starting address value should be written from the host
processor into the DSP's IDMA Control register. The DSP's starting
address is then followed by the IDMA Overlay Control word, which is
used to assign the proper internal DSP overlay memory region that will be
accessed during the IDMA transfer.

! Please keep in mind that the IDMA Overlay register applies only for
the ADSP-2187, ADSP-2188, and ADSP-2189 processors.

The next values are the data or instruction values (IDMA data word 1…n)
that need to be transferred. When the microcontroller has transferred the
proper number of items (as determined by the count), it gets the next
count value from the buffer, the next DSP address, and so on.

The download process stops when the microcontroller encounters a count
value of 0xffff. This download process is shown in Figure 10-34.
MC68332 assembly code to implement this download process is presented
in Listing 10-1 on page 10-55.
ADSP-218x DSP Hardware Reference 10-53

Interfacing Examples
Done

Count
Expired?

Yes

No

Read Count Value

Read DSP Starting
Address

Write DSP Starting
Address to 6833x

Address $4000

Read DSP Overlay
Control Word

Write DSP Overlay
Control Word to 6833x

Address $4002

Read Data Value from
Buffer and Write to 6833x

Address $4000

Read Next Count or Done

Yes

No
Count=FFFF

?

Figure 10-34. MC6833x Download Flow Process
10-54 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
Listing 10-1. Downloading Code and Data to ADSP-2189 IDMA Port
Interface Example (MC6833x Assembly Code)

; download.asm
;
; This code runs on an MC6833x processor and is used to
; download code and data segments to an ADSP-2189 IDMA port
; interface.
; Note: The ADSP-2189 is a 3.3V device in order to avoid damage
; use 5V to 3.3V logic level Voltage translator (e.g. QS 3384)
;
SCDR EQU $fffc0e ;SCI Data Register
SCCR0 EQU $fffc08 ;SCI Control Register 0
SCCR1 EQU $fffc0a ;SCI Control Register 1
QMCR EQU $fffc00 ;QSM Configuration Register
SCSR EQU $fffc0c ;SCI Status Register
SRAMBAH EQU $fffb44 ;SRAM Base Address Register High Word
SRAMMCR EQU $fffb40 ;SRAM Module Configuration Register
FYPCR EQU $fffa21 ;SCIM System Protection Control Register
SIMMCR EQU $fffa00 ;SCIM Configuration Register
CSPAR0 EQU$fffa44 ;Chip Select Pin Assignment Register 0
CSPAR1 EQU $fffa46 ;Chip Select Pin Assignment Register 1
CSBAR0 EQU $fffa4c ;Chip Select Base Register 0
CSOR0 EQU $fffa4e ;Chip Select Option Register 0
PORTF0 EQU $fffa18 ;Port F Data Register

; 6833x MEMORY MAP:

; $000000-$0003FF Interrupt Vector Table {TRAM}
; $000400-$000DFF Code Space {TRAM}
; $010000-$0101FF Variables (left blank) {SRAM}
; $0101FF-Downward Stack Space {SRAM}
; ***
; Variables
; DSP Code and Data will be placed here
; ***

org $010000

; Opcode and data information for DSP download should be
; included here

org $000400
ADSP-218x DSP Hardware Reference 10-55

Interfacing Examples
; ***
; Init: Beginning of the CODE segment
; ***

Init:
move.b #$0,(FYPCR).L ; Turn off watchdog timer
move.l #$101FE,a7 ; Stack at location $101FE
move.w #$0001,(SRAMBAH).L ; Move SRAM to $10000
move.w #$0000,(SRAMMCR).L ; Turn on SRAM (Variables/Stack)
move.w #$0040,(SIMMCR).L ; Enable User Mode
move.w #$3FFF,(CSPAR0).L ; Enable Chip Selects 0-5
move.w #$03FF,(CSPAR1).L ; Enable Chip Selects 6-10
move.w #$0000,(CSBAR0).L ; Use Chip Select 0
move.w #$3822,(CSOR0).L ; Assert Chip Select 0

top:
move.w (PORTF0).l,d1 ; Check PF1 to see if IACK low
and.w #$0002,d1 ; before proceeding
bne top
move.l #$002002,a4 ; initialize a4 with Address

; Latch address
move.l #$002000,a3 ; initialize a3 with data port

; address
move.l #$010000,a2 ; initialize a2 to start of DSP

; code/data
move.w (a2)+,d2 ; load count value into d2

tx_rx_loop:

move.w (PORTF0).l,d1 ; check PF1 to see if IACK low
and.w #$0002,d1
bne t x_rx_loop
move.w (a2)+,(a4) ; write starting address to IDMAA
move.w (a2)+,(a4) ; write IDMA OVERLAY register

; (218x)
sub.w #$1,d2 ; decrement count

tx_dat a:

move.w (a2)+,(a3) ; transfer next instruction
10-56 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
wait_data:
move.w (PORTF0).l,d1 ; check PF1 to see if /IACK low
and.w #$0002,d1
bne wait_data
dbf d2,tx_data ; decrement count to see if at end

; of module
move (a2),d4 ; get next count value
sub.w #$ffff,d4 ; check if end of all modules
beq done_data ; if at end, send Restart vector

; if booting, done otherwise
move (a2)+,d2 ; get next module count
bra tx_rx_loop ; go back to transferring DSP

; information

done_data:
bra done_data ; data file is completed.

Host-DSP Message Transfers

In addition to boot-loading the DSP, many systems require continuous
interaction between a host microcontroller and the DSP computation
engine. The IDMA port of the ADSP-2189 processor was designed so that
there does not need to be any DSP core involvement with host microcon-
troller transfers. The host processor is expected to manage the data flow to
and from the DSP.

No DSP interrupts are generated during IDMA accesses, and IDMA
transfers occur asynchronously to DSP operation. Therefore, the system
designer must allocate DSP internal memory resources and arbitrate host
accesses so that there is no conflict between host access and DSP access of
DSP internal memory resources. For data transfers, one could allocate an
area of internal memory for “messages” and constrain the host to access
this area only. For code transfers other than booting, a software flag set in
this “message” area could be used to signal the host that the DSP is avail-
able for transfer.
ADSP-218x DSP Hardware Reference 10-57

Interfacing Examples
Advanced Topics

This section discusses some issues that the system designer may find help-
ful when using the Motorola MC68332 for more complex systems.

Multiple Processors

In this hardware example, we focused on connecting a single
ADSP-2189M DSP to a Motorola MC68332 microprocessor. This
scheme can easily be expanded to support multiple DSP processors, with-
out additional glue logic. In a multiple DSP system, multiple IS lines are
needed to select each individual DSP processor. The multiple IACK signals
from each DSP can be bussed together in a “wired-OR” configuration to
create a single IACK signal to the host processor. The 100-pin ADSP-218x
processors (all ADSP-218x processors except for the ADSP-2181 and
ADSP-2183) support this “wired-OR” IACK logic configuration when
their Mode C and Mode D pins are set to a logic high. In this configuration,
an external pulldown resistor is needed, since the IACK signal is driven
from an open-drain PMOS transistor.

For our system design, each DSP processor requires two of the Motorola
6833x’s memory locations: one memory location is used to perform an
IDMA address latch sequence; the other is used for transmitting or receiv-
ing IDMA data. Both memory location addresses are used to assert the
appropriate IS signal of the specific DSP processor in the system that the
host processor wishes to access. In this manner, each DSP processor can be
accessed individually.
10-58 ADSP-218x DSP Hardware Reference

Hardware Interfacing and Examples
Hardware Signaling

In many instances, it may be desirable for the host and DSP processors to
have additional avenues of communication. The host can use one of its
programmable flags as an output attached to a hardware interrupt on the
DSP. With this method, the host can alert the DSP before a transfer
occurs or inform the DSP that a transfer has been completed. This
method can be especially useful since there is no interrupt associated with
IDMA operation on the ADSP-2189. The DSP can likewise use a pro-
grammable flag as an output to signal the host if there is new data for the
host to use or if new code is required for download.

References
The following is a list of references for materials used in developing this
chapter and for materials that provide additional information. Please note
that many of these materials can be found on Analog Devices’ Web pages
at www.analog.com.

• Steven W. Smith, The Scientist and Engineer’s Guide to Digital Signal
Processing, Second Edition, 1999, California Technical Publishing,
P.O. Box 50240, San Diego, CA 92150.

• C. Britton Rorabaugh, DSP Primer, McGraw-Hill, 1999.

• Richard J. Higgins, Digital Signal Processing in VLSI, Pren-
tice-Hall,1990.

• DSP Designer’s Reference (DSP Solutions) CDROM, Analog
Devices,1999.

• DSP Navigators: Interactive Tutorials about Analog Devices’ DSP
Architectures (ADSP-218x family):

• DSP Training and Workshops:
ADSP-218x DSP Hardware Reference 10-59

References
• ADSP-2100 Family EZ-KIT Lite Reference Manual.

• ADSP-2100 Family DSP Applications, Vol. 1 and Vol. 2.

• M68300 Family CPU32 Reference Manual, Motorola, Inc. (refer-
ence number CPU32RM/AD)

• Modular Microcontroller Family SIM Reference Manual, Motorola,
Inc. (reference number SIMRM/AD)

• MC68F333 User’s Manual, Motorola, Inc. (reference number
MC68F333UM/AD)

• 68F333 Development Kit User’s Manual, Revision 1.00, P&E Micro-
computer Systems, Inc.
10-60 ADSP-218x DSP Hardware Reference

A NUMERIC FORMATS
Figure A-0.

Table A-0.

Listing A-0.
Overview
ADSP-218x family processors support 16-bit fixed-point data in hard-
ware. Special features in the computation units allow you to support other
formats in software. This appendix describes various aspects of the 16-bit
data format. It also describes how to implement a block floating-point for-
mat in software.

Unsigned or Signed: Twos-Complement
Format

Unsigned binary numbers may be thought of as positive, having nearly
twice the magnitude of a signed number of the same length. The least sig-
nificant words of multiple precision numbers are treated as unsigned
numbers.

Signed numbers supported by the ADSP-218x family are in twos-comple-
ment format. Signed-magnitude, ones-complement, BCD or excess-n
formats are not supported.
ADSP-218x DSP Hardware Reference A-1

Integer or Fractional Format
Integer or Fractional Format
The ADSP-218x family supports both fractional and integer data formats,
with the exception that the ADSP-2100 processor does not perform inte-
ger multiplication. In an integer, the radix point is assumed to lie to the
right of the LSB, so that all magnitude bits have a weight of 1 or greater.
This format is shown in Figure A-1, which can be found on the following
page. Note that in twos-complement format, the sign bit has a negative
weight.

In a fractional format, the assumed radix point lies within the number, so
that some or all of the magnitude bits have a weight of less than 1. In the
format shown in Figure A-2, the assumed radix point lies to the left of the
3 LSBs, and the bits have the weights indicated.

15 14 13

• • •

2 1 0

–(2) 2 2 2 2 2
15 14 13 2 1 0

Sign
Bit

Weight

Bit

Signed Integer

15 14 13

• • •

2 1 0

2 2 2 2 2 2
15 14 13 2 1 0

Weight

Bit

Unsigned Integer

Radix
Point

Radix
Point

Figure A-1. Integer Format
A-2 ADSP-218x DSP Hardware Reference

Numeric Formats
The notation used to describe a format consists two numbers separated by
a period (.); the first number is the number of bits to the left of radix
point, the second is the number of bits to the right of the radix point. For
example, 16.0 format is an integer format; all bits lie to the left of the
radix point. The format shown in Figure A-2 is 13.3.

15 14 13

• • •

2 1 0

–(2) 2 2 2 2 2
12 11 10 –1 –2 –3

Sign
Bit

Weight

Bit

Signed Fractional (13.3)

15 14 13

• • •

2 1 0

2 2 2 2 2 2
12 11 10 –1 –2 –3

Weight

Bit

Unsigned Fractional (13.3)

4 3

2 2
1 0

4 3

2 2
1 0

Radix
Point

Radix
Point

Figure A-2. Fractional Format
ADSP-218x DSP Hardware Reference A-3

Integer or Fractional Format
Table A-1 shows the ranges of numbers that can be represented in the
fractional formats that are possible with 16 bits.

Table A-1. Fractional Formats and Their Ranges

Format # of
Integer
Bits

of
Fractional
Bits

Max Positive Value
(0x7FFF) In Decimal

Max Negative
Value (0x8000)
In Decimal

Value of 1 LSB
(0x0001) In Decimal

1.15 1 15 0.999969482421875 –1.0 0.000030517578125

2.14 2 14 1.999938964843750 –2.0 0.000061035156250

3.13 3 13 3.999877929687500 –4.0 0.000122070312500

4.12 4 12 7.999755859375000 –8.0 0.000244140625000

5.11 5 11 15.999511718750000 –16.0 0.000488281250000

6.10 6 10 31.999023437500000 –32.0 0.000976562500000

7.9 7 9 63.998046875000000 –64.0 0.001953125000000

8.8 8 8 127.996093750000000 –128.0 0.003906250000000

9.7 9 7 255.992187500000000 –256.0 0.007812500000000

10.6 10 6 511.984375000000000 –512.0 0.015625000000000

11.5 11 5 1023.968750000000000 –1024.0 0.031250000000000

12.4 12 4 2047.937500000000000 –2048.0 0.062500000000000

13.3 13 3 4095.875000000000000 –4096.0 0.125000000000000

14.2 14 2 8191.750000000000000 –8192.0 0.250000000000000

15.1 15 1 16383.500000000000000 –16384.0 0.500000000000000

16.0 16 0 32767.000000000000000 –32768.0 1.000000000000000
A-4 ADSP-218x DSP Hardware Reference

Numeric Formats
Binary Multiplication
In addition and subtraction, both operands must be in the same format
(signed or unsigned, radix point in the same location) and the result for-
mat is the same as the input format. Addition and subtraction are
performed the same way whether the inputs are signed or unsigned.

In multiplication, however, the inputs can have different formats, and the
result depends on their formats. The ADSP-218x family assembly lan-
guage allows you to specify whether the inputs are both signed, both
unsigned, or one of each (mixed-mode). The location of the radix point in
the result can be derived from its location in each of the inputs. This is
shown in Figure A-3. The product of two 16-bit numbers is a 32-bit num-
ber. If the inputs’ formats are M.N and P.Q, the product has the format
(M+P).(N+Q). For example, the product of two 13.3 numbers is a 26.6
number. The product of two 1.15 numbers is a 2.30 number.

16-Bit Examples:

5.3
5.3

10.6

1.15

1.15

2.30

1.111

11.11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0 1001

1.3 format

2.2 format

3.5 format = (1+2) . (2+3)

4-Bit Example:

M.N

P.Q

(M+P) . (N+Q)

General Rule:

011.

Figure A-3. Format of Multiplier Result
ADSP-218x DSP Hardware Reference A-5

Binary Multiplication
Fractional Mode and Integer Mode
A product of 2 twos-complement numbers has two sign bits. Since one of
these bits is redundant, you can shift the entire result left one bit. Addi-
tionally, if one of the inputs was a 1.15 number, the left shift causes the
result to have the same format as the other input (with 16 bits of addi-
tional precision). For example, multiplying a 1.15 number by a 5.11
number yields a 6.26 number. When shifted left one bit, the result is a
5.27 number, or a 5.11 number plus 16 LSBs.

The ADSP-218x family provides a mode (called the fractional mode) in
which the multiplier result is always shifted left one bit before being writ-
ten to the result register. This left shift eliminates the extra sign bit when
both operands are signed, yielding a correctly formatted result.

When both operands are in 1.15 format, the result is 2.30 (30 fractional
bits). A left shift causes the multiplier result to be 1.31 which can be
rounded to 1.15. Thus, if you use a fractional data format, it is most con-
venient to use the 1.15 format.

In the integer mode, the left shift does not occur. This is the mode to use
if both operands are integers (in the 16.0 format). The 32-bit multiplier
result is in 32.0 format, also an integer.

In all ADSP-218x DSPs, fractional and integer modes are controlled by a
bit in the MSTAT register. At reset, these processors default to the fractional
mode.
A-6 ADSP-218x DSP Hardware Reference

Numeric Formats
Block Floating-Point Format
A block floating-point format enables a fixed-point processor to gain some
of the increased dynamic range of a floating-point format without the
overhead needed to do floating-point arithmetic. Some additional pro-
gramming is required to maintain a block floating-point format, however.

A floating-point number has an exponent that indicates the position of the
radix point in the actual value. In block floating-point format, a set
(block) of data values share a common exponent. To convert a block of
fixed-point values to block floating-point format, you would shift each
value left by the same amount and store the shift value as the block
exponent.

 Typically, block floating-point format allows you to shift out non-signifi-
cant MSBs, increasing the precision available in each value. You can also
use block floating-point format to eliminate the possibility of a data value
overflowing. Figure A-4 shows an example.

0x0FFF

0x1FFF

0x07FF

=

=

=

0000

0001

0000

1111

1111

0111

1111

1111

1111

1111

1111

1111

2 Guard Bits

Sign Bit

To detect bit growth into 2 guard bits, set SB=–2

Figure A-4. Data With Guard Bits
ADSP-218x DSP Hardware Reference A-7

Block Floating-Point Format
The three data samples each have at least 2 non-significant, redundant
sign bits. Each data value can grow by these two bits (two orders of magni-
tude) before overflowing; thus, these bits are called guard bits. If it is
known that a process will not cause any value to grow by more than these
two bits, then the process can be run without loss of data. Afterward, how-
ever, the block must be adjusted to replace the guard bits before the next
process.

Figure A-5 shows the data after processing but before adjustment.

0x1FFF

0x3FFF

0x07FF

=

=

=

0001

0011

0000

1111

1111

0111

1111

1111

1111

1111

1111

1111

1 Guard Bit

Sign Bit

EXPADJ instruction checks
exponent, adjusts SB

Exponent = –2

Exponent = –1

Exponent = –4

SB = –2

SB = –1

SB = –1

0x0FFF

0x1FFF

0x03FF

=

=

=

0000

0001

0000

1111

1111

0011

1111

1111

1111

1111

1111

1111

2 Guard Bits

Sign Bit

1. Check for Bit Growth

2. Shift Right to Restore Guard Bits

Figure A-5. Block Floating-Point Adjustment
A-8 ADSP-218x DSP Hardware Reference

Numeric Formats
The block floating-point adjustment is performed as follows. Initially, the
value of SB is –2, corresponding to the 2 guard bits. During processing,
each resulting data value is inspected by the EXPADJ instruction, which
counts the number of redundant sign bits and adjusts SB is if the number
of redundant sign bits is less than 2. In this example, SB=–1 after process-
ing, indicating that the block of data must be shifted right one bit to
maintain the 2 guard bits. If SB were 0 after processing, the block would
have to be shifted two bits right. In either case, the block exponent is
updated to reflect the shift.
ADSP-218x DSP Hardware Reference A-9

Block Floating-Point Format
A-10 ADSP-218x DSP Hardware Reference

B CONTROL/STATUS
REGISTERS

Figure B-0.

Table B-0.

Listing B-0.
Overview
This appendix shows bit definitions for ADSP-218x memory-mapped
control registers and non-memory-mapped control and status registers.
The memory-mapped registers are listed in descending address order.
Default bit values at reset are shown. If no value is shown, the bit is unde-
fined at reset. Reserved bits are shown on a grey field. These reserved bits
must be set to zero.
ADSP-218x DSP Hardware Reference B-1

Overview
RFSDIV

SCLKDIV

ALU MAC

SHIFTER

PROGRAM SEQUENCER

I3

I0

I1

I2

L0

L1

L2

L3

CNTR

OW RCNTR

PX

COUNT
STACK
4 X 14

ASTAT

STATUS STACK*

MSTAT*IMASK*

PC
STACK
16 X 14

LOOP
STACK
4 X 18

IFC*

ICNTL

SSTAT

AX0 AX1 AY1AY0

AFAR

MX0 MX1 MY1MY0

MR0MR1MR2 MF

SR0SR1

SI SE SB

M0

M1

14 1414

M3

14 1414

M5

M6

M7I7

I4

I5

I6

L5

L6

L7

M4L4

14

18 14

58

8

8

8

BUS EXCHANGE

5

8 16 16

* STAT US STAC K DEPTH=12 MEM ORY LOCA TIONS, WIDTH=25 BITS

DATA ADDRESS GENE RATORS

(DM ADDRESSING ONLY) (DM AND PM ADDRESSING)

BIT-REVERSE CAPABILITY INDIRECT BRANCH CAPABILITY

DAG1 DAG2

SPORT 0

RX0 TX0

SPORT0 CONTROL

0X3FFA

0X3FF9

0X3FF8

0X3FF7

MULTICHANNEL ENABLES

RX 31-16

RX 15-0

TX 31-16

TX 15-0

AUTOBUFFER

0X3FF6

0X3FF5

0X3FF4

0X3FF3

CONTROL

RX1 TX1

SPORT 1

SPORT1 CONTROL

0X3FF2

0X3FF1

0X3FF0

0X3FEF

TIMER

TPERIOD

TCOUNT

0X3FFD

0X3FFC

0X3FFB

BDMA PORT
PROGRAMMABLE FLAGS

0X3FE0 BWCOUNT

BDMA CONTROL

BEAD

0X3FE4

0X3FE3

0X3FE2

BIAD0X3FE1

IDMA CONTROL
REGISTER

BDMA REGISTERS

0X3FE6 PFTYPE

0X3FE5 PFDATA

IDMA REGISTERS

PROGRAMMABLE
FLAG REGISTERS

IDMA PORT

MEMORY INTERFACE

0X3FFF

0X3FFE WAIT S TATES

PMOVLAY

4

DMOV LAY

4

PROCESSOR CORE

M2 TSCALE

SYSTEM CONTROL
REGISTER

AUTOBUFFER

CONTROL

SCKLDIV

RFSDIV

16

10 7

16

Figure B-1. ADSP-218x Registers
B-2 ADSP-218x DSP Hardware Reference

Control/Status Registers
Memory-Mapped Registers

PWAIT

BMS Disable *

SPORT0 Enable

1 = enabled, 0 = disabled

SPORT1 Enable

1 = enabled, 0 = d isabled

SPORT1 Configure

1 = Serial Port
0 = FI, FO, IRQ0, IRQ 1, SCLK

System Control

DM(0x3FFF)

Note: Reserved bits15-13 and 9-4
must always be set to 0.

*

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 1 0 0 0 0 0 0

PR OG RA M MEM O RY

The BMS Disable bit applies to
all L, M, and N series processors and
the ADSP-2184 and ADSP-2186
processors. This bit is unused in all
other ADSP-218x processors and
should be set to 0.

0 = enabled, 1= disabled

11 1

Figure B-2. System Control Register

Default bit va lues a t reset are shown. If no va lue is shown, the bit is undefined at reset.
Reserved bits are shown on a grey field . These reserved bits must be set to zero.
ADSP-218x DSP Hardware Reference B-3

Memory-Mapped Registers
IOWAIT0IOWAIT1IOWAIT2IOWAIT3DWAIT

DM(0x3FFE)

Wait State Mode Select
0 = norm al mode (PWAIT, D WAIT, IOWAIT0-3 = N wait states, ranging from 0 to 7)
1= 2N+1 mode (PW AIT, D WAIT, IOWAIT0-3 = 2N+1 wait states, ranging from 0 to 15)

W ait State Control

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

(ADSP-218x M and N Series Processors)

1 1 1 1 1 1 1 1 1 1 11 1 1 1

Figure B-3. Wait State Control Register (ADSP-218x M and N Series)

(All ADSP-218x P rocessors except ADSP-218x M an d N Series)

IOWAIT0IOWAIT1IOWAIT2IOWAIT3DWAIT

DM(0x3FFE)

Wait State Control

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 1 1 1 11 1 1 1

Figure B-4. Wait State Control Register (All ADSP-218x Processors except
the M and N Series)

Default bit va lues a t reset are shown. If no va lue is shown, the bit is undefined at reset.
Reserved bits are shown on a grey field . These reserved bits must be set to zero.
B-4 ADSP-218x DSP Hardware Reference

Control/Status Registers
1 5 1 4 1 3 1 2 1 1 1 0

TPERIOD Period Register

TCOUNT Cou nter Register

TSCALE S caling Register00000000

Tim er

DM(0x3FFC)

DM(0x3FFB)

DM(0x3FFD)

9 8 7 6 5 4 3 2 1 0

Figure B-5. Timer Registers

DM(0x3FF6)

15 14 13 12 11 10

M CE
M ultichannel Enable

ISCLK
Internal Serial Clock Generation

RFSR
Receive Frame Sync Required

TFSR
Transm it Frame Sync Required

TFSW
Transm it Frame Sync Width

RFSW
Receive Frame Sync Width

M FD
M ultichannel Fram e Delay

IRFS
Internal Receive Frame Sync Enable

INVTFS
Invert Transm it Fram e Sync
(or INVTDV Invert Transm it Data Valid)

INVRFS
Invert Receive Fram e Sync

SLEN (Serial Word Length – 1)

DTYPE Data Form at
00=right justify, zero-fill unused M SBs
01=right justify, sign-extend into unused MSBs
10=compand using µµµµ -law
11=compand using A-law

ITFS
Internal Transmit Frame Sync Enable

(or M CL M ultichannel Length:
1=32 words, 0=24 words)

(only If Multichannel M ode Enabled)

0000000000000000

(only If M ultichannel Mode Enabled)

(only If M ultichannel Mode Enabled)

SPORT0 Control

9 8 7 6 5 4 3 2 1 0

Figure B-6. SPORT0 Control Register

Default bit va lues a t reset are shown. If no va lue is shown, the bit is undefined at reset.
Reserved bits are shown on a grey field . These reserved bits must be set to zero.
ADSP-218x DSP Hardware Reference B-5

Memory-Mapped Registers
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R eceiv e

W ord
Enables

Transm it

W ord

Enables

D M (0x3FFA)

D M (0x3FF9)

D M (0x3FF8)

D M (0x3FF7)

1 = channe l enab led

0 = channe l ignored

S P O R T0 M ultic hanne l W ord E nable

8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 015 14 13 12 11 10

Figure B-7. SPORT0 Multichannel Word Enable Registers

Default bit va lues a t reset are shown. If no va lue is shown, the bit is undefined at reset.
Reserved bits are shown on a grey field . These reserved bits must be set to zero.
B-6 ADSP-218x DSP Hardware Reference

Control/Status Registers
SPORT0 A utobuffer Control

DM(0x3FF3)

TBUF
Transmit Autob uffering Enable

RBUF
Receive Autobuffering Enable

TIREG TMREG RIREG RMREG

BIASRND
MAC Biased Ro unding Control Bit

CLKODIS
CLKOUT Disable Control Bit

0 0 0 0 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 00 0 0 0

Figure B-8. SPORT0 Autobuffer Control Register

SPORT0 SCLKDIV

Serial Clock Divide Modulus

1 5 1 4 1 3 1 2 1 1 10

1 5 1 4 1 3 1 2 1 1 1 0

SPORT0 RFSDIV
Receive Frame Sync Divide Modulus

DM(0x3FF4)

DM(0x3FF5)

SCLKfrequ ency

RFS frequency
RFSDIV = – 1SCLKDIV =

CLKOUT frequency

2 * (SCLK frequency)

9 8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

– 1

Figure B-9. SPORT0 SCLKDIV and RFSDIV Registers

Default bit va lues a t reset are shown. If no va lue is shown, the bit is undefined at reset.
Reserved bits are shown on a grey field . These reserved bits must be set to zero.
ADSP-218x DSP Hardware Reference B-7

Memory-Mapped Registers
Flag Out (read-only)

15 14 13 12 11 10

ISCLK
Internal Serial Clock Generation

RFSR

TFSR
Transm it Fram e Sync Required

TFSW
Transm it Fram e Sync Width

RFSW
Receive Fram e Sync Width

IRFS
Internal Receive Fram e Sync Enable

INVTFS
Invert Transm it Fram e Sync

INVRFS
Invert Receive Fram e Sync

SLEN (Serial Word Length – 1)

DTYPE Data Format

00=right justify, zero-fill unused MSBs

10=com pand using µµµµ -law
11=com pand using A-law

ITFS
Internal Transm it Frame Sync Enable

000000000 DM(0x3FF2)

SPORT1 Control

9 8 7 6 5 4 3 2 1 0

00=right justify, sign-extend into unused M SBsReceive Fram e Sync Required

000000

Figure B-10. SPORT1 Control register

Default bit va lues a t reset are shown. If no va lue is shown, the bit is undefined at reset.
Reserved bits are shown on a grey field . These reserved bits must be set to zero.
B-8 ADSP-218x DSP Hardware Reference

Control/Status Registers
S P O R T1 S C LK D IV
S eria l C lock D iv ide M odulus

1 5 1 4 1 3 1 2 1 1 10

1 5 1 4 1 3 1 2 1 1 1 0

S P O R T1 R FS D IV
R eceive Fram e Sync D iv ide M odulus

D M (0x3FF0)

D M (0x3FF1)

SC LK freq uency

R FS frequ ency
R FSD IV = – 1SC LK DIV =

C LKO U T freq uency

2 * (SC LK freq uency)

9 8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

– 1

Figure B-11. SPORT1 SCLKDIV and RFSDIV Registers

Default bit va lues a t reset are shown. If no va lue is shown, the bit is undefined at reset.
Reserved bits are shown on a grey field . These reserved bits must be set to zero.
ADSP-218x DSP Hardware Reference B-9

Memory-Mapped Registers
SPORT1 Autobuffer Control

15 14 13 12 11 10

TBUF
Transmit Autobuffer Enable

RBUF
Receive Autobuffer Enable

RMREG
Receive M Register

RIREG
Receive I Register

TMREG
Transmit M Register

TIREG
Transmit I Register

XTALDIS
XTAL pin disable during powerdown

1=disabled, 0=enabled
(XTAL pin should be disabled when

no external crystal is connected)

XTALDELAY
1=delay, 0=no delay

(Use delay to allow internal phase

 oscillator to stabilize)

PDFORCE
Powerdown Force

1=force processor to vector to
powerdown interrupt

PUCR
Powerup Context Reset

1=soft reset (clear context)
0=resume execution

DM(0x3FEF)

9 8 7 6 5 4 3 2 1 0

000 0 00

 locked loop or external

Figure B-12. SPORT1 Autobuffer Control Register

Default bit va lues a t reset are shown. If no va lue is shown, the bit is undefined at reset.
Reserved bits are shown on a grey field . These reserved bits must be set to zero.
B-10 ADSP-218x DSP Hardware Reference

Control/Status Registers
1 = enable CMS

BMWAIT

Programmable Flag and Composite Select Control

CMSSEL

0 = disable CMS

DM(0x3FE6)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(ADSP-218x M and N Series Processors)

1 0 1 1
DMBMIOM PM

1 1 1 1

PFTYPE

1 = output

0 = input

0 0 0 0 0 00 0

Figure B-13. Programmable Flag and Composite Select Control Register
(ADSP-218x M and N Series Processors)

Default bit va lues a t reset are shown. If no va lue is shown, the bit is undefined at reset.
Reserved bits are shown on a grey field . These reserved bits must be set to zero.

1 = enable CMS

BMWAIT

Programmable Flag and Composite Select Control

CMSSEL

0 = disable CMS

DM(0x3FE6)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

(All ADSP-218x Processors except M and N Series)

1 0 1 1
DMBMIOM PM

1 1 1

PFTYPE

0 0 0 0 0 0 0 0

1 = output

0 = input

Figure B-14. Programmable Flag and Composite Select Control Register
(All ADSP-218x processors except M and N Series)
ADSP-218x DSP Hardware Reference B-11

Memory-Mapped Registers
PFDATA

Programmable Flag Data

DM(0x3FE5)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

Note: At reset the programmable flag pins PF7-PF0
are inputs. Therefore, the value of the PFDATA bit
field is determined by the pin inputs (externally
driven) at reset.

Figure B-15. Programmable Flag Data Register

15 1 4 13 12 11 10 9 7 5 3 1

BMPAG E

BDMA Control

DM(0x3FE3)

BDIR

0 = load from BM
1 = store to BM

BCR

0 = run during BDM A
1 = halt during BDMA,

Context Reset when done

BTYPE (See table)

BTYPE 00 01 10 11

Internal M emory Space PM DM DM DM

Word Size 24 16 8 8

Alignment Full Full MSB LSB
 word word

8 6 4 2 0

BMOVLAY

(ADSP-2187 , ADSP-2188, and ADSP-2189)

Figure B-16. BDMA Control Register (All ADSP-2187, ADSP-2188,
ADSP-2189 Processors)

Default bit va lues a t reset are shown. If no va lue is shown, the bit is undefined at reset.
Reserved bits are shown on a grey field . These reserved bits must be set to zero.
B-12 ADSP-218x DSP Hardware Reference

Control/Status Registers
15 1 4 13 12 11 10 9 7 5 3 1

BMPAG E

BDMA Control

DM(0x3FE3)

BDIR

0 = load from BM
1 = store to BM

BCR

0 = run during BDM A
1 = halt during BDMA,

Context Reset when done

BTYPE (See table)

BTYPE 00 01 10 11

Internal M emory Space PM DM DM DM

Word Size 24 16 8 8

Alignment Full Full MSB LSB
 word word

8 6 4 2 0

(All ADSP-218x Processors except ADSP-2187, ADSP-2188, and ADSP-2189)

Figure B-17. BDMA Control Register (All ADSP-218x Processors
except ADSP-2187, ADSP-2188, and ADSP-2189)

Default bit va lues a t reset are shown. If no va lue is shown, the bit is undefined at reset.
Reserved bits are shown on a grey field . These reserved bits must be set to zero.
ADSP-218x DSP Hardware Reference B-13

Memory-Mapped Registers
00

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

D M (0 x 3 F E 4)

B D M A W o rd C o u n t

 M M A P = 0 a n d B M O D E = 0 (A D S P -2 1 8 1 a n d A D S P -2 1 8 3 o n ly)

B W C O U N T

B W C O U N T

o r

D M (0 x 3 F E 4)

M O D E B = 0 (A ll o th e r A D S P -2 1 8 x p ro c e s s o rs)

 M M A P = 1 o r B M O D E = 1 (A D S P -2 1 8 1 a n d A D S P -2 1 8 3 o n ly)

M O D E B = 1 (A ll o th e r A D S P -2 1 8 x p ro c e s s o rs)

N o te : B its 1 4 a n d 1 5 a re u n u s e d
a n d s h o u ld b e s e t to 0 .

00

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 00 0 0 0

0 0 0 0 0 0 0 0 0 00 0 1 0

Figure B-18. BDMA Word Count Register

Default bit va lues a t reset are shown. If no va lue is shown, the bit is undefined at reset.
Reserved bits are shown on a grey field . These reserved bits must be set to zero.
B-14 ADSP-218x DSP Hardware Reference

Control/Status Registers
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00

B D M A E x te rn a l A dd res s

D M (0x 3F E 2)

B E A D

N o te : B its 14 a n d 15 a re u n u s ed
an d s h o u ld b e se t to 0 .

0 00 0 0 0 0 0 0 0 0 0 0 0

Figure B-19. BDMA External Address Register

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

00

B D M A In te rn a l A d d re s s

D M (0x 3 F E 1)

B IA D

N o te : B its 1 4 a n d 1 5 a re u n u s e d
a n d sh o u ld b e s e t to 0 .

0 00 0 0 0 0 0 0 0 0 0 0 0

Figure B-20. BDMA Internal Address Register

Default bit va lues a t reset are shown. If no va lue is shown, the bit is undefined at reset.
Reserved bits are shown on a grey field . These reserved bits must be set to zero.
ADSP-218x DSP Hardware Reference B-15

Memory-Mapped Registers
ID M A C ontro l

D M (0x3FE 0)

ID M A A

S tarting a ddress

ID M A D

D estination m em ory type:

0=P M
1=D M

N ote: B it 1 5 is a rese rved b it a nd
shou ld b e s et to 0 in a ll A D S P -218x
processo rs except the A D S P -2187 ,
A D S P -218 8 , and A D S P -21 89 .

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

Figure B-21. IDMA Control Register

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

ID M A O v e rla y

D M (0 x 3 F E 7)

ID P M O V L A Y

ID D M O V L A Y

R e s e rv e d

S e t to 0

N o te 1 : T h e ID D M O V L A Y a n d ID P M O V L A Y b it f ie ld s a p p ly o n ly to th e A D S P -2 1 8 7 , A D S P -

2 1 8 8 , a n d A D S P -2 1 8 9 p ro c e s s o rs . F o r a ll o th e r A D S P -2 1 8 x p ro c e s s o rs , th e s e b its a re

u n u s e d a n d m u s t b e s e t to 0 .

N o te 2 : T h e s h o r t re a d o n ly b it (b it 1 4) a p p lie s to M a n d N s e r ie s o n ly .

F o r a ll o th e r A D S P -2 1 8 x p ro c e s s o rs , th is b it is u n u s e d a n d m u s t b e s e t to z e ro .

0 0 0 0 0 0 0 00 0 0 0 0 00 0

R e s e rv e d

S e t to 0

S h o rt R e a d O n ly

0 = D is a b le , 1 = E n a b le

Figure B-22. IDMA Overlay Register

Default bit va lues a t reset are shown. If no va lue is shown, the bit is undefined at reset.
Reserved bits are shown on a grey field . These reserved bits must be set to zero.
B-16 ADSP-218x DSP Hardware Reference

Control/Status Registers
Non-Memory Mapped Registers

ASTAT

PC S tack E mpty

PC Stack O verflow

Cou nt S tack Empty

Cou nt Stack O verflow

Status S tack Empty

Statu s Stack O verflow

Loop S tack Empty

Loop Stack O verflow

01234567

10101010

ALU R esult Zero

ALU R esult Negative

ALU Overflow

ALU C arry

ALU X Input S ign

ALU Qu otient

MAC O verflow

Shifter Input Sign

01234567

0000000

SS M V AQ AS AC AV AN AZ

SSTAT (read-only)

0

Figure B-23. ASTAT and SSTAT Registers

Register B ank Select
0=prim ary, 1=secon dary

B it-R evers e Addressing Enable (D AG1)

ALU O verflow Latch M od e Enable

AR Saturation M ode Enab le

MA C Resu lt P lacem ent
0=fract iona l, 1=integ er

Timer En able

G o M ode Enable

0123456

0000000

Interrupt N estin g

1=edge

0=level

1=enab le
0=disab le

IRQ 0 Sens itivity

IRQ 1 Sens itivity

IRQ 2 Sens itivity

MSTAT ICNTL

01234

Figure B-24. MSTAT and ICNTL Registers

Default bit va lues a t reset are shown. If no va lue is shown, the bit is undefined at reset.
Reserved bits are shown on a grey field . These reserved bits must be set to zero.
ADSP-218x DSP Hardware Reference B-17

Non-Memory Mapped Registers
IMASK

00000000

SP OR T0 R eceive

IRQ L0

IRQ L1

SPO RT0 Transm it

00

BDM A Interrupt

IRQ E

Timer

SPO RT1 Transmit or IRQ 1

INTER RUPT ENA BLES

1 = enable

0 = disable (mask)

9 8 7 6 5 4 3 2 1 0

IRQ 2

SPO RT1 Receive or IR Q0

Figure B-25. IMASK Register

IFC
(write-only)

11 10 9

Timer

000000000000

IRQ 2

15 14 13 12

0000

Timer

SPO RT1 Transmit or IRQ 1

SPO RT1 Receive or IR Q0

SPO RT1 Receive or IR Q0

SPO RT1 Transmit or IRQ 1

IRQ 2

BDM A Interrupt

Interrupt Force Bits Interrupt C lear Bits

SPOR T0 R eceive

SPO RT0 Transm it

SP OR T0 R eceive

SPO RT0 Transm it

IRQEBDM A Interrupt

IRQ E

8 7 6 5 4 3 2 1 0

Figure B-26. IFC Register

Default bit va lues a t reset are shown. If no va lue is shown, the bit is undefined at reset.
Reserved bits are shown on a grey field . These reserved bits must be set to zero.
B-18 ADSP-218x DSP Hardware Reference

C ADVANCED PRODUCT
FEATURES

Figure C-0.

Table C-0.

Listing C-0.
Overview
This appendix provides a summary of advanced features that are included
in the ADSP-218x family processors. Table C-1 lists each processor and
identifies the features each contains. (For basic features, see Table 1-1 in
Chapter 1, “Introduction.”)

Table C-1. ADSP_218x Processor Advanced Features

Processor BDMA
Mode

Switching

BMS
Disable

IDMA/
BDMA
Overlay
Support

RAM

IDMA
Short
Read
Only
Mode

Enhanced
Wait
States

(2N+1,
BMWAIT)

Mode D
IACK

Wired-OR

ADSP-2181 No No No No No N/A

ADSP-2183 No No No No No N/A

ADSP-2184 Yes Yes No No No No

ADSP-2184L1 Yes Yes No No No No

ADSP-2184N3 Yes Yes No Yes Yes Yes

ADSP-2185 Yes No No No No No

ADSP-2185L1 Yes Yes No No No No

ADSP-2185M2 Yes Yes No Yes Yes Yes
ADSP-218x DSP Hardware Reference C-1

Overview
ADSP-2185N3 Yes Yes No Yes Yes Yes

ADSP-2186 Yes Yes No No No No

ADSP-2186L1 Yes Yes No No No No

ADSP-2186M2 Yes Yes No Yes Yes Yes

ADSP-2186N3 Yes Yes No Yes Yes Yes

ADSP-2187L1 Yes Yes Yes No No Yes

ADSP-2187N3 Yes Yes Yes Yes Yes Yes

ADSP-2188M2 Yes Yes Yes Yes Yes Yes

ADSP-2188N3 Yes Yes Yes Yes Yes Yes

ADSP-2189M2 Yes Yes Yes Yes Yes Yes

ADSP-2189N3 Yes Yes Yes Yes Yes Yes

1 L indicates that the processor operates at 3.3 V. These processors are not tolerant to 5 V inputs.
2 M indicates that the processor core operates at 2.5 V and that the external I/O can op-

erate at 2.5 V or 3.3 V. The external I/O is tolerant to up to 3.6 V inputs with a supply
voltage of 2.5 V or 3.3 V. However, it is not tolerant to 5 V inputs.

3 N indicates that the processor core operates at 1.8 V and that the external I/O can operate
at 1.8 V or 3.3 V. The external I/O is tolerant to up to 3.6 V inputs with a supply voltage
of 1.8 V or 3.3 V. However, it is not tolerant to 5 V inputs.

Table C-1. ADSP_218x Processor Advanced Features (Cont’d)

Processor BDMA
Mode

Switching

BMS
Disable

IDMA/
BDMA
Overlay
Support

RAM

IDMA
Short
Read
Only
Mode

Enhanced
Wait
States

(2N+1,
BMWAIT)

Mode D
IACK

Wired-OR
C-2 ADSP-218x DSP Hardware Reference

I INDEX

Symbols Addressing

µ-law 5-28

Numerics
1.15 format 2-2

A
Accessing Peripherals 8-24
ADCs

interface
parallel 10-2, 10-9, 10-10, 10-38–

10-39
serial 10-34–10-37

memory-mapped, reading data from
10-2–10-10

Address generators 1-15
Address latch cycle 9-33–9-34
Addresses

base, calculating 4-6
BDMA, external 9-7
next, select logic for 3-3
vector

ADSP-218x interrupt 3-16

direct 1-16
indirect 1-16, 4-4
linear indirect addressing 4-4
modulo (circular buffers) 4-5

ADSP-2181 and ADSP-2183
pins, descriptions 7-4–7-7

A-law 5-28
ALU

arithmetic 2-3
block diagram 2-8
carry (AC) 2-38
divide primitives 2-14–2-20
division 2-14–2-20
input/output registers 2-12
multiprecision operations 2-13
overflow latch mode 2-14
overflows 2-13
registers

ASTAT 2-9
AX 2-9
MSTAT 1-15, 2-10

saturation mode 2-13
standard functions 2-11
status 2-20
structure 2-8
ADSP-218x DSP Hardware Reference I-1

INDEX
Analog front ends, interfacing
10-25–10-29

AR register 2-13
Architecture

core 1-12–1-16
Harvard, modified 8-1, 8-5

Arithmetic
formats 2-5
Shifter 2-4

Arithmetic Logic Unit, see ALU
Arithmetic Status register (ASTAT)

3-27–3-28
see also ASTAT register

Arrays and variables 4-9
ASTAT register 2-9, B-17
Autobuffering 5-32–5-37

enabled 5-53
example 5-36
service, SPORTs 5-51
SPORTs

circular buffer 5-32
overlay registers 5-35

synchronization, to processor
clock 5-49

AX registers
AX0 2-9
AX1 2-9

B
Barrel Shifter, see Shifter
Base address, calculating 4-6
BDMA

accesses, Host Mode 8-25
addresses, external 9-7

booting 9-15
register values 7-30
sequence 9-18
software features 9-20

control registers 9-5–9-13
controller 1-18
port 1-9, 9-2–9-20

during powerdown 7-53
functional description 9-4

transfers
control registers 9-5
formulas for 9-4

BDMA Control register B-12, B-13
BDMA External Address register

9-7, B-15
BDMA Internal Address register

9-3, 9-5, 9-6, B-15
BDMA Word Count register 9-11,

B-14
Biased rounding 2-31
Binary

multiplication A-5–A-8
string 2-1
unsigned numbers 2-2

Bit-reverse addressing 4-8
Block floating-point format A-7–

A-8
BMODE pin 9-15
BMS

disable control bit 8-21
see also Byte Memory, space

BMWAIT field 9-12, 9-13
Boot code, generating 10-51–10-57
I-2 ADSP-218x DSP Hardware Reference

INDEX
Boot loading 9-46–9-47, 10-49–
10-57

Booting
BDMA 7-30, 9-15

sequence 9-18
IDMA 10-49–10-57
methods 9-16

ADSP-2181 and ADSP-2183
9-16

Buffers
circular 4-10, 5-32

Bus Grant Hung (BGH)
output 7-61

Bus request or grant 7-59
Buses 1-16

DMA 1-16, 8-2, 8-12
DMD 1-16, 2-9, 2-10, 2-14,

2-22, 2-23, 2-28, 2-33, 8-2
memory 8-2
PMA 1-16, 8-2, 8-9
PMD 1-16, 2-9, 2-22, 8-2
R 1-16, 2-9, 2-10, 2-22, 2-23,

2-28, 2-33
Byte Direct Memory Access, see

BDMA
Byte Memory 9-2

interface 8-15–8-16
space 1-18, 8-2
storage formats 9-14
word formats 9-14

C
C Compiler and Assembler 1-20
Calculating, base address 4-6
CALL instruction 3-13
Capacitors

decoupling 7-66
Circular buffers 4-10
Clock

1/2x considerations 7-22
signals 7-19–7-22

CLKIN pin 7-19
CLKOUT pin 7-19
crystal connections 7-20
processor states 7-21
XTAL pin 7-19

synchronization delay 7-22
CMS, see Composite Memory Select

8-3
Code

boot 10-51–10-57
host 10-52–10-57

Codecs
interface, serial 10-32
interfacing 10-25–10-29

Common-mode pins 7-9–7-12
Companding

delay, SPORTs 5-44
operation example 5-29
receive

example 5-52
latencies 5-52
ADSP-218x DSP Hardware Reference I-3

INDEX
SPORTs 5-28–5-31
A-law and µ-law 5-28
hardware contention 5-30
internal data 5-31
operation sequence 5-29

Composite Memory Select (CMS)
8-18–8-22

Composite Memory Select register
(CMS) 8-3

Composite Select Control register
9-12, 9-13, B-11

Computational units 1-14, 2-1–
2-49

ALU 2-3, 2-7
MAC 2-4
overview 2-1
Shifter 2-4

Conditional instructions 3-33
Configuration

SPORTs, example 5-19
Configuring interrupts 3-19–3-25
Contention

companding hardware, SPORTs
5-30

Conventions, document 1-25
Core architecture 1-12–1-16
Customer support 1-24
Cycle

address latch 9-25, 9-33–9-34
long read 9-35–9-37
long write 9-41–9-44
overlay latch 9-34
short read 9-37–9-39
short read only mode 9-40–9-41

short write 9-44–9-46
stealing 9-1, 9-47

D
DACs

interface, serial 10-40
memory-mapped, writing data to

10-10–10-16
Data

accesses, programming 4-9
format, SPORTs 5-28–5-31

Data address generators (DAGs)
4-1–4-13

block diagram 4-2
overview 4-1
registers 4-2
using with hardware overlays 4-14

Data Memory 8-1
interface 8-12–8-15
overlays 8-12–8-15

Data Memory Address bus, see
DMA bus

Data Memory Data bus, see DMD
bus

Data Memory Overlay register
(DMOVLAY) 8-12–8-15

using with autobuffering 4-14,
5-35

using with DAGs 4-14, 5-35
Debugger 1-20
Delay, clock synchronization 7-22
Denormalize 2-44
Derive block exponent instruction

2-41
I-4 ADSP-218x DSP Hardware Reference

INDEX
Development tools 1-19–1-23
Diodes, protection 7-36
Direct addressing 1-16
Divide primitives, ALU 2-14–2-20

DIVQ 2-17–2-20
DIVS 2-14–2-17

Division, ALU 2-14–2-20
DIVQ 2-17–2-20
DIVS 2-14–2-17
DMA bus 1-16, 8-2, 8-12
DMA ports 1-18
DMD bus 1-16, 2-9, 2-10, 2-14,

2-22, 2-23, 2-28, 2-33, 8-2
DO UNTIL instruction 3-6–3-10

termination condition logic 3-7
DO UNTIL loops 3-13
Document, conventions 1-25
Documents, related 1-24
DSPs

interfacing to 10-1–10-32
multiple 10-58
performance 1-11
see also Processors

DTYPE field, SPORT Control
register 5-28

Dual power supply, M series
processors 7-39

E
Emulation, EZ_ICE 7-68
ERESET signal, with Mode pins

7-64
ESD protection 7-36
Examples, interfacing 10-32–10-59

External
interrupts 7-31–7-33
memory spaces 8-3
Overlay Memory 8-3
Program Memory 8-9
TTL/CMOS clock 7-48

EZ-ICE 1-22
bus request signal 7-65
circuit for ADSP-218x Mode pins

7-65
connector 7-63
emulation 7-68
memory select signal with 7-66
powerup procedure 7-68
probe, target system board

connector 7-62
EZ-KIT Lite 1-21

F
Flag pins 7-33–7-35

during powerdown 7-51
general purpose 7-34

Floating-point, block format A-7–
A-8

Formats
arithmetic 2-5
block floating-point A-7–A-8
fractional A-2–A-4
integer A-2–A-4
twos-complement A-1

Fractional
format A-2–A-4
mode A-6
representation: 1.15 2-2
ADSP-218x DSP Hardware Reference I-5

INDEX
Frame
synchronization 5-2, 5-14

internally generated 5-45
signal 5-2, 5-17, 5-18, 5-27
signal source 5-15–5-16

Framing mode, normal and
alternate 5-21–5-27

Full Memory Mode 1-9, 8-23
pins 7-12, 8-26

Functional units 1-6–1-8
Functions

ALU 2-11
MAC 2-24

G
Gated serial clocks 5-55
Generators, reset 7-40–7-42
Global enable/disable for interrupts

3-23
Go mode 3-32

bus request or grant 7-59

H
Hardware

development tools 1-21
host interface design 10-45–10-48
signaling 10-59
target system 7-62–7-70

Harvard architecture, modified 8-1,
8-5

Hold offs 9-47
Host

code, generating 10-52–10-57
interface, hardware design 10-45–

10-48
message transfers 10-57

Host Memory Mode 1-9, 8-24–
8-26

pins 7-13, 8-26

I
I/O Memory

space 8-2, 8-16–8-18
I/O ports

interfacing 10-25–10-29
IACK acknowledge 9-47
ICNTL register 3-20, B-17
IDLE instruction 3-15
IDMA

address latch cycle 9-25
timing 9-33

booting 10-49–10-57
control register,

modifying 9-31
interface 10-42–10-59
long read cycle 9-35–9-37

timing 9-36
long write cycle 9-41–9-44
I-6 ADSP-218x DSP Hardware Reference

INDEX
port 1-9, 8-4, 9-21–9-50
boot loading 9-46–9-47,

10-49–10-57
during powerdown 7-53
functional description 9-28–

9-31
input signals 9-23
interface 9-21
pins 9-22

short read cycle 9-37–9-39
short read only mode timing

9-40
timing 9-38, 9-40

short read only mode cycle 9-40–
9-41

short write cycle 9-44–9-46
timing 9-45

system design issues 10-49–10-57
timing 9-32–9-41
transfers 9-28–9-31

sequence 10-43
IDMA Control register 9-24–9-30,

10-44, B-16
IDMA Overlay register 9-24–9-26,

B-16
Overlay latch cycle 9-34
Short Read Only mode 9-41
short read only mode 9-41

IF conditions logic 3-33
IFC register 3-23, B-18
IMASK register 3-20, B-18

ISRs 3-21
Immediate shifts 2-42

Indirect addressing 1-16, 4-4
Input formats 2-27
Instruction set 1-10
Instructions

CALL 3-13
completion latencies 5-50
conditional 3-33
DO UNTIL 3-6–3-10

termination condition logic 3-7
IDLE 3-15
JUMP 3-11
Mode Control 3-30
program control 3-11–3-16
slow IDLE 3-15
status conditions 3-33
TOPPCSTACK 3-34

registers used 3-35
restrictions 3-37

Integer
format A-2–A-4
mode A-6

Integrated development
environment (IDE) 1-19

Interfaces
Byte Memory 8-15–8-16
Data Memory 8-12–8-15
host 10-45–10-48
IDMA 10-42–10-59
memory 1-9
memory mappings 8-5–8-9
Program Memory 8-9–8-12
system 1-9
ADSP-218x DSP Hardware Reference I-7

INDEX
Interfacing
analog front ends 10-25–10-29
codecs 10-25–10-29
examples 10-32–10-59
high-speed 10-29–10-32
I/O Ports 10-25–10-29
parallel 10-2–10-16
serial 10-16–10-25
to DSPs 10-1–10-32

Internal Direct Memory Access, see
IDMA

Interrupt Control register, see
ICNTL register

Interrupt Force and Clear register,
see IFC register

Interrupt Mask register, see IMASK
register

Interrupts
autobuffering enabled 5-53
configuring 3-19–3-25
external 7-31–7-33
global enable/disable 3-23
latency 3-24
non-maskable

using powerdown as 7-59
processor operation during

powerdown 7-51
program sequencer 3-16–3-25
receive timing 5-48
sensitivity 7-32
servicing sequence 3-18
SPORTs 5-5

priorities 5-5

sychronization to processor clock
5-49

transmit timing 5-47
vector addresses 3-16

INVRFS bit, SPORT Control
register 5-19

INVTFS bit, SPORT Control
register 5-19

IO pin, ESD protection 7-36
IRFS bit, SPORT Control register

5-15
ISCLK bit, SPORT Control register

5-11, 5-12
ITFS bit, SPORT Control register

5-15

J
JUMP instruction 3-11

direct 3-11
register indirect

overlays 4-14

L
Latch

IDMA address timing 9-33
Latencies

instruction completion 5-50
receive companding 5-52

Latency, interrupts 3-24
Linear indirect addressing 4-4
Linker 1-21
Linker Description File 1-21
Loader 1-21
I-8 ADSP-218x DSP Hardware Reference

INDEX
Loop comparator and stack 3-6–
3-10

Loop counter register and stack 3-5
Loops

DO UNTIL 3-13

M
MAC 2-20–2-32

arithmetic 2-4
input/output registers 2-28
operations 2-24
overflow and saturation 2-29
standard functions 2-24
structure 2-21

Memory
architecture

ADSP-2181, ADSP-2183, and
ADSP-2185 8-6

ADSP-2184 8-6
ADSP-2186 8-7
ADSP-2187L 8-7
ADSP-2188M 8-8
ADSP-2189M 8-8

buses 8-2
byte 9-2
Data 8-1
external 8-1, 8-2
external overlay 8-3
interface

modes 8-23–8-27
pins 8-26

interfaces 8-1–8-27
interfaces, mappings 8-5–8-9

mode pins 7-12–7-13
modes 8-4
Program 8-1
select signals 7-66
spaces

Byte 1-18, 8-2
external 8-3
I/O 8-2

Memory interface 1-9
Memory select signals

PMS, DMS, BMS, and IOMS
8-19

Memory-Mapped registers B-3–
B-16

MMAP pin 9-15
Mode

active or passive pin configuration
7-13

framing, normal and alternate
5-21–5-27

multichannel 5-38
pins 8-26

multiplexing 8-4
with RESET and ERESET sig-

nals 7-64
single-channel 5-38

Mode A pin 9-15
Mode B pin 9-15
Mode C pin 8-23, 8-24, 9-15
Mode Control instructions 3-30
Mode D pin 9-15
Mode Status register (MSTAT), see

MSTAT
ADSP-218x DSP Hardware Reference I-9

INDEX
Modes
fractional A-6
Go 3-32
integer A-6
memory 8-4

Full Memory 1-9, 8-23
Host Memory 1-9, 8-24–8-26
interface 8-23–8-27

Modulo addressing (circular
buffers) 4-5

Monitors
power supply 7-42

MR register
operation 2-28

MSTAT register 1-15, 2-10, 2-13,
2-14, 3-30, B-17

secondary set 3-31
Multichannel function

SPORTs 5-38–5-43
setup 5-39

Multiple processors 10-58
Multiplication

binary A-5–A-8
Multiplier/Accumulator, see MAC
Multiprecision operation, ALU

2-13

N
Next address select logic 3-3
Non-Memory Mapped registers

B-17–B-18
Normalize 2-45

Numbers
binary 2-1
fractional format: 1.15 2-2
signed 2-2, A-1
unsigned A-1
unsigned binary 2-2

O
On-chip peripherals 1-17–1-18
Overflow latch mode, ALU 2-14
Overflows, ALU 2-13
Overlay latch cycle 9-34
Overlays

Data Memory 8-12–8-15
memory, external 8-3
Program Memory 8-9, 8-10

internal and external 8-11
using autobuffering with 5-35
using DAGs with 4-14, 5-35

Overshoot and ringing
SPORTs 5-57

P
Packages

100-LQFP 7-7–7-14
common-mode pins 7-9–7-12
memory mode pins 7-12–7-14

128-LQFP 7-3–7-7
processor configurations 7-1

Parallel
interface 10-2, 10-9, 10-10
interfacing to DSPs 10-2–10-16
port, ADC interface 10-38–10-39
I-10 ADSP-218x DSP Hardware Reference

INDEX
PC stack
popping top value 3-34
pushing top value 3-34

PCB board
target systems 7-67

Performance, DSP 1-11
Peripherals, on-chip 1-17–1-18
Pins

100-LQFP packages
common-mode 7-9–7-12
memory mode 7-12–7-14

active or passive mode
configuration 7-13

BMODE 9-15
Bus Grant Hung (BGH) 7-61
CLKIN 7-19
CLKOUT 7-19
common-mode 7-9–7-12
descriptions 7-1–7-19

100-LQFP packages 7-7–7-14
128-LQFP packages 7-3–7-7
ADSP-2181 and ADSP-2183

7-4–7-7
flag 7-33–7-35

general purpose 7-34
Full Memory Mode 7-12, 8-26
Host Memory Mode 7-13, 8-26
IDMA port 9-22
memory interface 8-26
memory mode 7-12–7-13
MMAP 9-15

Mode
EZ-ICE circuit for 7-65
with RESET and ERESET sig-

nals 7-64
Mode A 9-15
Mode B 9-15
Mode C 9-15
Mode D 9-15
powerdown and acknowledge

(PWDACK) 7-57
states during powerdown 7-54–

7-57
unused

recommendations 7-18
terminating 7-14

XTAL 7-19
PMA bus 1-16, 8-2, 8-9
PMD bus 1-16, 2-9, 2-22, 8-2
PMD-DMD bus exchange 1-16,

2-9, 2-22, 4-11
block diagram 4-12
structure 4-11–4-13

Ports
BDMA 1-9, 9-2–9-20, 9-21
IDMA 8-4, 9-21–9-50

functional description 9-28–
9-31

parallel
ADC interface 10-38–10-39

serial 1-17
ADC interface 10-34–10-37
codec interface 10-32
DAC interface 10-40
ADSP-218x DSP Hardware Reference I-11

INDEX
Power
consumption, lowest 7-54–7-57
supplies

dual, for M series processors
7-39

dual-voltage processors 7-37
monitor for 7-42

Powerdown 7-43–7-58
BDMA port during 7-53
control 7-44
entering 7-45
exiting 7-46

with the Powerdown pin 7-46
with the RESET pin 7-47

IDMA port during 7-53
pin states during 7-54–7-57
powerdown and acknowledge pin

(PWDACK) 7-57
processor operation during 7-51

interrupts and flags 7-51
SPORTs 7-51

sequence 7-45
startup time after 7-48
timing examples 7-58
using as a non-maskable interrupt

7-59
Powerdown pin (PWD)

exiting with 7-46
Powerup

dual-voltage processors 7-35–
7-39

EZ-ICE 7-68
sequence

dual voltage processors 7-36

Priority chain 9-49
Processors

ADSP-218x family 1-4–1-6, C-1
after reset or software reboot

7-25–7-29
package configurations 7-1
resetting 7-23–7-29

Products, third party 1-22
Program control instructions 3-11–

3-16
Program Memory 8-1

external 8-9
interface 8-9–8-12
Overlay regions 8-11
Overlay segments 8-9, 8-10

Program Memory Address bus, see
PMA bus

Program Memory Data bus, see
PMD bus

Program Memory Overlay register
(PMOVLAY) 8-9, 8-10

using with autobuffering 4-14,
5-35

using with DAGs 4-14, 5-35
Program sequencer 1-15, 3-1–3-38

interrupts 3-16–3-25
overview 3-1
structure 3-2

Programmable Flag and Composite
Select Control register 7-34,
8-15, B-11

Programmable Flag Data register
7-35, B-12

Programming data accesses 4-9
PX register 4-12
I-12 ADSP-218x DSP Hardware Reference

INDEX
R
R bus 1-16, 2-9, 2-10, 2-22, 2-23,

2-28, 2-33
Rebooting

software-forced 7-24
Rebooting, timer during 7-25
Receive

companding example 5-52
interrupt timing 5-48

References
hardware interface design 10-59

Registers
ADSP-218x B-2
ALU 2-9

input⁄ output 2-12
AR 2-13
Arithmetic Status register

(ASTAT) 2-9, 3-27–3-28, B-17
BDMA Control 9-5–9-13, B-12,

B-13
BDMA External Address 9-7,

B-15
BDMA Internal Address 9-3, 9-5,

9-6, B-15
BDMA Word Count B-14
Composite Memory Select (CMS)

8-3
Composite Select Control B-11
data address generators 4-2
Data Memory Overlay

(DMOVLAY) 8-12–8-15
ICNTL 3-20

IDMA Control 9-24–9-30,
10-44, B-16
modifying 9-31

IDMA Overlay 9-24–9-26, B-16
IFC 3-23
IMASK 3-20

ISRs 3-21
Interrupt Control (ICNTL) B-17
Interrupt Force and Clear (IFC)

B-18
Interrupt Mask (IMASK) B-18
loop counter 3-5
MAC input/output 2-28
Memory-Mapped B-3–B-16
Mode Status (MSTAT) 1-15,

2-10, 2-13, 2-14, 3-30, B-17
secondary set 3-31

Non-Memory Mapped B-17–
B-18

Program Memory Overlay
(PMOVLAY) 8-9, 8-10

Programmable Flag and
Composite Select Control 7-34,
8-15, B-11

Programmable Flag Data 7-35,
B-12

PX 4-12
secondary set 3-31
SPORT Autobuffer Control 5-34
SPORT Control

DTYPE field 5-28
SLEN field 5-13

SPORT0 Autobuffer Control B-7
ADSP-218x DSP Hardware Reference I-13

INDEX
SPORT0 Control B-5
SPORT0 Multichannel Word

Enable B-6
SPORT0 RFSDIV B-7
SPORT0 SCLKDIV B-7
SPORT1 Autobuffer Control

B-10
SPORT1 Autobuffer/Powerdown

Control 7-44
SPORT1 Control B-8
SPORT1 RFSDIV B-9
SPORT1 SCLKDIV B-9
SPORTs

configuration 5-6
receive (RX0 and RX1) 5-9
transmit (TX0 and TX1) 5-9

Stack Status (SSTAT) 3-28, B-17
status 3-26

ASTAT 3-27
MSTAT 3-30
SSTAT 3-28

System Control 5-10, B-3
timer B-5

period 6-1
TCOUNT 6-2–6-6
TPERIOD 6-2–6-6
TSCALE 6-2–6-6

values
BDMA booting 7-30

Wait State Control 8-16–8-17,
B-4

Related documents 1-24
Requests

priority chain for concurrent 9-49

RESET
pin, exiting with 7-47
signal

target systems 7-67
with Mode pins 7-64

Reset
generators 7-40–7-42

for M series processors 7-41
processor 7-23–7-29

Result bus, see R bus
RFSR bit, SPORT Control register

5-14
RFSW bit, SPORT Control register

5-18
Rounding mode 2-30

S
Saturation mode

ALU 2-13
Serial

ADC
to DSP Interface 10-19–10-22

DAC
to DSP Interface 10-23–10-25

interfacing to DSPs 10-16–10-25
port

ADC interface 10-34–10-37
codec Interface 10-32
DAC interface 10-40

Serial clocks 5-11–5-57
frequencies 5-12
gated 5-55
signal 5-11

Serial Ports, see SPORTs
I-14 ADSP-218x DSP Hardware Reference

INDEX
Shifter 2-4, 2-32–2-49
arithmetic 2-4
input/output registers 2-41
operations 2-40
structure 2-32

Signal
Composite Memory Select (CMS)

8-18–8-22
Signaling

hardware 10-59
Signals

bus request (BR), with EZ-ICE
7-65

clock 7-19–7-22
frame synchronization 5-2
IDMA port, input 9-23
memory select 7-66, 8-19
RESET

target systems 7-67
SCLK 5-11

Signed numbers A-1
twos- complement 2-2

SLEN field 5-13
Slow IDLE instruction 3-15
Software

development tools 1-20–1-21
forced rebooting 7-24

Space
I/O Memory 8-16–8-18

SPORT Control register
ISCLK bit 5-11, 5-12
SLEN field 5-13

SPORT0 Autobuffer Control
register B-7

SPORT0 Control register B-5
SPORT0 Multichannel Word

Enable registers B-6
SPORT0 RFSDIV register B-7
SPORT0 SCLKDIV register B-7
SPORT1

configuration 5-10
Flag In (F1) and Flag Out (FO)

pins 7-33
SPORT1 Autobuffer Control

register B-10
SPORT1 Autobuffer/Powerdown

Control register 7-44
SPORT1 Control register B-8
SPORT1 RFSDIV registers B-9
SPORT1 SCLKDIV register B-9
SPORTs 1-17, 5-1–5-55

Autobuffer Control register 5-34
autobuffering 5-32–5-37

circular 5-32
enabled 5-53
overlay registers 5-35
service 5-51
sychronization 5-49

basic description 5-1–5-6
block diagram 5-2
companding 5-28–5-31

A-law and µ-law 5-28
hardware contention 5-30
internal data 5-31
operation sequence 5-29

configuration 5-6–5-8
example 5-19
registers 5-6
ADSP-218x DSP Hardware Reference I-15

INDEX
data format 5-28–5-31
enable 5-10
external enable circuit 5-58
interrupts 5-5

autobuffering enabled 5-53
priorities 5-5
service 5-51
sychronization to processor

clock 5-49
ISCLK bit 5-11, 5-12
latencies

instruction completion 5-50
receive companding 5-52

multichannel
function 5-38–5-43
setup 5-39

operation 5-5
overshoot and ringing 5-57
processor operation during

powerdown 7-51
programming 5-6–5-9
receiving and transmitting data

5-9
registers

receive (RX0 and RX1) 5-9
transmit (TX0 and TX1) 5-9

serial clocks 5-11–5-57
gated 5-55
signal 5-11

SPORT Control register
INVTFS and INVRFS bits 5-19
ITFS and IRFS bits 5-15
RFSR and TFSR bits 5-14
TFSW and RFSW bits 5-18

System Control register 5-10
timing 5-44–5-55

companding delay 5-44
example 5-21–5-27
internally generated frame syn-

chronization 5-45
startup 5-45
synchronization delay 5-44

word
framing 5-14
length 5-13

Stack Status register (SSTAT) 3-28,
B-17

Stacks
counter 3-5
status 3-26

Startup
SPORTs, timing 5-45
time after powerdown 7-48

crystal and internal oscillator
7-49

external TTL/CMOS clock
7-48

Status
registers 3-26

ASTAT 3-27
MSTAT 3-30
SSTAT 3-28

stack 3-26
Status conditions

IF condition logic 3-33
Sychronization delay

SPORTs timing 5-44
I-16 ADSP-218x DSP Hardware Reference

INDEX
Synchronization
frame 5-2, 5-14

internally generated 5-45
signal 5-17, 5-18, 5-27
signal source 5-15–5-16

System Control register 5-10, B-3
System interface 1-9, 7-1–7-70,

10-31

T
Target systems

board connector for EZ-ICE
probe 7-62

decoupling capacitors 7-66
hardware 7-62–7-70
PCB board 7-67

Terminating, unused pins 7-14
TFSR bit, SPORT Control register

5-14
TFSW bit, SPORT Control register

5-18
Third party products 1-22
Timer 1-17, 6-1–6-7

architecture 6-2
block diagram 6-3
enabling 6-6
operation 6-4
period register 6-1
rebooting 7-25

registers B-5
TCOUNT 6-2–6-6
TPERIOD 6-2–6-6
TSCALE 6-2–6-6

resolution 6-4
Timing

IDMA 9-32–9-41
long read cycle 9-36
long write cycle 9-43
short read cycle 9-38
short read cycle, short read only

mode 9-40
short write cycle 9-45

receive interrupts 5-48
SPORTs 5-44–5-55

example 5-21–5-27
internally generated frame syn-

chronization 5-45
transmit interrupts 5-47

Tools
development 1-19–1-23
hardware development 1-21
software development 1-20–1-21

TOPPCSTACK instruction 3-34
registers used 3-35
restrictions 3-37

Transfers
BDMA

control registers 9-5
formulas for 9-4

host messages 10-57
IDMA 9-28–9-31, 10-43

Transmit interrupt timing 5-47
Twos-complement format A-1
ADSP-218x DSP Hardware Reference I-17

INDEX
U
Underflows, ALU 2-13
Unsigned binary numbers 2-2, A-1

V
Variables and arrays 4-9

W
Wait State Control register 8-16–

8-17, B-4
Word

framing, SPORTs 5-14
length, SPORTs 5-13
I-18 ADSP-218x DSP Hardware Reference

	Introduction
	Purpose 1�1
	Audience 1�1
	Overview 1�2
	ADSP-218x Family Processors 1�4
	Functional Units 1�6
	Memory and System Interface 1�9
	Instruction Set 1�10
	DSP Performance 1�11

	Core Architecture 1�12
	Computational Units 1�14
	Address Generators and Program Sequencer 1�15
	Buses 1�16

	On-chip Peripherals 1�17
	Serial Ports 1�17
	Timer 1�17
	DMA Ports 1�18

	Development Tools 1�19
	Integrated Development Environment 1�19
	Debugger 1�20
	Software Development Tools 1�20
	C Compiler and Assembler 1�20
	Linker and Loader 1�21

	Hardware Development Tools 1�21
	EZ-KIT Lite 1�21
	EZ-ICE 1�22

	Third Party Products 1�22

	Information Online 1�23
	Customer Support 1�24
	Related Documents 1�24
	Conventions 1�25

	Computational Units
	Overview 2�1
	Binary String 2�1
	Unsigned Binary Numbers 2�2
	Signed Numbers: Twos-Complement 2�2
	Fractional Representation: 1.15 2�2
	ALU Arithmetic 2�3
	MAC Arithmetic 2�4
	Shifter Arithmetic 2�4
	Arithmetic Formats Summary 2�5

	Arithmetic Logic Unit (ALU) 2�7
	ALU Structure 2�8
	Standard Functions 2�11
	ALU Input/Output Registers 2�12
	Multiprecision Capability 2�13
	ALU Saturation Mode 2�13
	ALU Overflow Latch Mode 2�14
	Division 2�14
	ALU Status 2�20

	Multiplier Accumulator (MAC) 2�20
	MAC Structure 2�21
	MAC Operations 2�24
	Standard Functions 2�24
	Input Formats 2�27
	MAC Input/Output Registers 2�28
	MR Register Operation 2�28
	MAC Overflow And Saturation 2�29
	Rounding Mode 2�30
	Biased Rounding 2�31

	Barrel Shifter 2�32
	Shifter Structure 2�32
	Shifter Operations 2�40
	Shifter Input/Output Registers 2�41
	Derive Block Exponent 2�41
	Immediate Shifts 2�42
	Denormalize 2�44
	Normalize 2�45

	Program Sequencer
	Overview 3�1
	Program Sequencer Structure 3�2
	Next Address Select Logic 3�3
	Program Counter Register and Stack 3�4
	Loop Counter Register and Stack 3�5
	Loop Comparator and Stack 3�6

	Program Control Instructions 3�11
	JUMP Instruction 3�11
	Direct JUMP Instructions 3�11
	Register Indirect JUMP Instructions 3�11

	CALL Instruction 3�13
	DO UNTIL Loops 3�13
	IDLE Instruction 3�15
	Slow IDLE Instruction 3�15

	Interrupts 3�16
	Interrupt Servicing Sequence 3�18
	Configuring Interrupts 3�19
	Interrupt Control Register 3�20
	Interrupt Mask Register 3�20
	Global Enable/Disable for Interrupts 3�23
	Interrupt Force and Clear Register 3�23
	Interrupt Latency 3�24

	Status Registers and Status Stack 3�26
	Arithmetic Status Register 3�27
	Stack Status Register 3�28
	Mode Status Register 3�30

	Conditional Instructions 3�33
	TOPPCSTACK Instruction 3�34
	TOPPCSTACK Restrictions 3�37

	Data Address Generators
	Overview 4�1
	Data Address Generators (DAGs) 4�1
	DAG Registers 4�2
	Indirect Addressing 4�4
	Linear Indirect Addressing 4�4

	Modulo Addressing (Circular Buffers) 4�5
	Calculating the Base Address 4�6
	Circular Buffer Base Address Example 1 4�6
	Circular Buffer Base Address Example 2 4�7
	Circular Buffer Operation Example 1 4�7
	Circular Buffer Operation Example 2 4�7

	Bit-Reverse Addressing 4�8

	Programming Data Accesses 4�9
	Variables and Arrays 4�9
	Circular Buffers 4�10

	PMD-DMD Bus Exchange 4�11
	PMD-DMD Bus Exchange Structure 4�11

	Using DAGs with Hardware Overlays 4�14

	Serial Ports
	Overview 5�1
	Basic Description 5�1
	Interrupts 5�5
	Operation 5�5

	SPORT Programming 5�6
	Configuration 5�6
	Receiving and Transmitting Data 5�9

	SPORT Enable 5�10
	Serial Clocks 5�11
	Word Length 5�13
	Word Framing Options 5�14
	Frame Synchronization 5�14
	Frame Synchronization Signal Source 5�15
	Normal and Alternate Framing Modes 5�17
	Active High or Active Low 5�18

	Configuration Example 5�19
	Timing Examples 5�21
	Companding and Data Format 5�28
	Companding Operation Example 5�29
	Contention for Companding Hardware 5�30
	Companding Internal Data 5�31

	Autobuffering 5�32
	Autobuffer Control Register 5�34
	Serial Port Autobuffering on the ADSP-2187/2188/2189 Processors 5�35
	Autobuffering Example 5�36

	Multichannel Function 5�38
	Multichannel Setup 5�39
	Multichannel Operation 5�41

	SPORT Timing Considerations 5�44
	Companding Delay 5�44
	Clock Synchronization Delay 5�44
	Startup Timing 5�45

	Internally Generated Frame Sync Timing 5�45
	Transmit Interrupt Timing 5�47
	Receive Interrupt Timing 5�48
	Interrupt and Autobuffer Synchronization 5�49
	Instruction Completion Latencies 5�50
	Interrupt and Autobuffer Service Example 5�51
	Receive Companding Latency 5�52
	Interrupts with Autobuffering Enabled 5�53
	Unusual Complications 5�54

	Serial Port Startup Issues 5�55
	Gated Serial Clocks 5�55
	Ringing and Overshoot on Serial Clock Pins 5�57
	Multi-Cycle Frame Sync Pulse 5�57

	Timer
	Overview 6�1
	Timer Architecture 6�2
	Resolution 6�4
	Timer Operation 6�4
	Enabling the Timer 6�6

	System Interface
	Overview 7�1
	Pin Descriptions 7�1
	Pin Descriptions for 128-LQFP Package Processors 7�3
	Pin Descriptions for 100-LQFP Package Processors 7�7
	Common-Mode Pins 7�9
	Memory Mode Pins 7�12
	Active or Passive Mode Pin Configuration 7�13
	Terminating Unused Pins 7�14
	Recommendations for Unused Pins 7�18

	Clock Signals 7�19
	Synchronization Delay 7�22
	1/2x Clock Considerations 7�22

	Resetting the Processor 7�23
	Software-Forced Rebooting 7�24
	Register Values for BDMA Booting 7�30

	External Interrupts 7�31
	Interrupt Sensitivity 7�32

	Flag Pins 7�33
	Powerup Issues 7�35
	Powerup Sequence 7�36
	Power Supplies 7�37
	Dual Supply Example 7�38

	Reset Generators 7�40

	Powerdown 7�43
	Powerdown Control 7�44
	Entering Powerdown 7�45
	Exiting Powerdown 7�46
	Ending Powerdown with the Powerdown Pin 7�46
	Ending Powerdown with the RESET Pin 7�47

	Startup Time after Powerdown 7�48
	Systems Using an External TTL/CMOS Clock 7�48
	Systems Using a Crystal and the Internal Oscillator 7�49

	Processor Operation During Powerdown 7�51
	Interrupts and Flags 7�51
	SPORTs 7�51
	IDMA Port During Powerdown 7�53
	BDMA Port During Powerdown 7�53

	Conditions for Lowest Power Consumption 7�54
	PWDACK Pin 7�57
	Using Powerdown as a Non-Maskable Interrupt 7�59

	Bus Request/Grant 7�59
	Target System Hardware 7�62
	Target Board Connector for EZ-ICE Probe 7�62
	Using Mode Pins with RESET and ERESET Signals 7�64

	Bus Request Signal 7�65
	Memory Select Signals 7�66
	Decoupling Capacitors 7�66
	RESET Signal 7�67
	PCB Board 7�67
	EZ-ICE Powerup Procedure 7�68
	Other Considerations 7�68
	Recommended Reading 7�69

	Memory Interface
	Overview 8�1
	Program Memory and Data Memory 8�1
	Byte Memory Space 8�2
	I/O Memory Space 8�2
	Memory Buses 8�2
	External Memory Spaces 8�3
	Composite Memory Select 8�3
	External Overlay Memory 8�3
	Internal Direct Memory Access Port 8�4
	Memory Modes 8�4

	Memory Interfaces 8�5
	Program Memory Interface 8�9
	Data Memory Interface 8�12
	Byte Memory Interface 8�15
	I/O Memory Space 8�16
	Composite Memory Select 8�18
	CMS Signal as Chip Select for 32 K x 8-Bit SRAMs 8�20
	BMS Disable 8�21

	Memory Interface Modes 8�23
	Full Memory Mode 8�23
	Host Memory Mode 8�24
	Accessing Peripherals 8�24
	Byte Memory Accesses 8�25

	Memory Interface Pins 8�26

	DMA Ports
	Overview 9�1
	BDMA Port 9�2
	BDMA Port Functional Description 9�4
	BDMA Control Registers 9�5
	Byte Memory Word Formats 9�14
	BDMA Booting 9�15
	Development Software Features for BDMA Booting 9�20

	IDMA Port 9�21
	IDMA Port Pin Summary 9�22
	DMA Port Functional Description 9�28
	Modifying Control Registers for IDMA 9�31
	IDMA Timing 9�32
	Address Latch Cycle 9�33
	Overlay Latch Cycle 9�34
	Long Read Cycle 9�35
	Short Read Cycle 9�37
	IDMA Read—Short Read Only Mode 9�40
	Long Write Cycle 9�41
	Short Write Cycle 9�44

	Boot Loading through the IDMA Port 9�46
	DMA Cycle Stealing, Hold Offs, and IACK Acknowledge 9�47
	Priority Chain 9�49

	Hardware Interfacing and Examples
	Overview 10�1
	Interfacing to DSP Processors 10�1
	Parallel Interfacing to DSP Processors 10�2
	Reading Data from Memory-Mapped ADCs 10�2
	Writing Data to Memory-Mapped DACs 10�10

	Serial Interfacing to DSP Processors 10�16
	Serial ADC to DSP Interface 10�19
	Serial DAC to DSP Interface 10�23

	Interfacing I/O Ports, Analog Front Ends, and Codecs 10�25
	High-Speed Interfacing 10�29
	DSP System Interface 10�31

	Interfacing Examples 10�32
	Serial Port to Codec Interface 10�32
	Serial Port to ADC Interface 10�34
	ADSP-218x DSP to AD7475/95 ADC Interface 10�34
	ADSP-218x DSP to AD7888 ADC interface 10�36

	Parallel Port to ADC Interface 10�38
	Serial Port to DAC Interface 10�40
	IDMA Interface to a Host Processor 10�42
	IDMA Operation 10�42
	Host Interface Hardware Design 10�45
	System Design Issues 10�49
	Advanced Topics 10�58

	References 10�59

	Numeric Formats
	Overview A�1
	Unsigned or Signed: Twos-Complement Format A�1
	Integer or Fractional Format A�2
	Binary Multiplication A�5
	Fractional Mode and Integer Mode A�6

	Block Floating-Point Format A�7

	Control/Status Registers
	Overview B�1
	Memory-Mapped Registers B�3
	Non-Memory Mapped Registers B�17

	Advanced Product Features
	Overview C�1

	Index
	8xintrod.pdf
	Contents
	1 Introduction
	Purpose
	Audience
	Overview
	ADSP-218x Family Processors
	Table 1-1. ADSP-218x Family Processors�

	Functional Units
	Memory and System Interface
	Instruction Set
	DSP Performance

	Core Architecture
	Figure 1-1. Core Architecture
	Computational Units
	Address Generators and Program Sequencer
	Buses

	On-chip Peripherals
	Serial Ports
	Timer
	DMA Ports

	Development Tools
	Integrated Development Environment
	Debugger
	Software Development Tools
	C Compiler and Assembler
	Linker and Loader

	Hardware Development Tools
	EZ-KIT Lite
	EZ-ICE

	Third Party Products

	Information Online
	Customer Support
	Related Documents
	Conventions
	Table 1-2. Notation Conventions

	Index

	8xcompu.pdf
	Contents
	2 Computational Units
	Overview
	Binary String
	Unsigned Binary Numbers
	Signed Numbers: Twos-Complement
	Fractional Representation: 1.15
	Figure 2-1. Bit Weighting for 1.15 Numbers
	Table 2-1. Examples of 1.15 Number Format

	ALU Arithmetic
	MAC Arithmetic
	Shifter Arithmetic
	Arithmetic Formats Summary
	Table 2-2. Arithmetic Formats�

	Arithmetic Logic Unit (ALU)
	ALU Structure
	Figure 2-2. ALU Block Diagram

	Standard Functions
	Table 2-3. Standard ALU Functions�

	ALU Input/Output Registers
	Table 2-4. Sources for ALU Input and Output Registers

	Multiprecision Capability
	ALU Saturation Mode
	Table 2-5. Saturation Mode

	ALU Overflow Latch Mode
	Division
	Figure 2-3. DIVS Operation
	Figure 2-4. DIVQ Operation
	Figure 2-5. Quotient Format

	ALU Status
	Table 2-6. ALU Status Bits in the ASTAT Register

	Multiplier Accumulator (MAC)
	MAC Structure
	Figure 2-6. MAC Block Diagram

	MAC Operations
	Standard Functions
	Table 2-7. Standard MAC Functions
	Figure 2-7. Fractional Multiplier Result Format
	Figure 2-8. Integer Multiplier Results Format

	Input Formats
	Table 2-8. X and Y Inputs

	MAC Input/Output Registers
	Table 2-9. Sources for MAC Input and Output Registers

	MR Register Operation
	MAC Overflow And Saturation
	Table 2-10. Effect of MAC Saturation Instruction

	Rounding Mode
	Figure 2-9. Typical Unbiased Multiplier Rounding Operation
	Figure 2-10. Avoiding Net Bias in Unbiased Multiplier Rounding Operation

	Biased Rounding
	Figure 2-11. Bias Rounding in Multiplier Operation

	Barrel Shifter
	Shifter Structure
	Figure 2-12. Shifter Block Diagram
	Figure 2-13. Shifter Array Output
	Figure 2-14. Exponent Detector Characteristics

	Shifter Operations
	Shifter Input/Output Registers
	Table 2-11. Shifter Input and Output

	Derive Block Exponent
	Immediate Shifts
	Denormalize
	Normalize

	Index

	8xsequen.pdf
	Contents
	3 Program Sequencer
	Overview
	Program Sequencer Structure
	Figure 3-1. Program Sequencer Block Diagram
	Next Address Select Logic
	Program Counter Register and Stack
	Loop Counter Register and Stack
	Loop Comparator and Stack
	Table 3-1. DO UNTIL Termination Condition Logic�

	Program Control Instructions
	JUMP Instruction
	Direct JUMP Instructions
	Register Indirect JUMP Instructions
	Listing 3-1. Nested Loop
	Listing 3-2. Indirect JUMP

	CALL Instruction
	DO UNTIL Loops
	Listing 3-3. DO UNTIL Loop Example

	IDLE Instruction
	Slow IDLE Instruction

	Interrupts
	Table 3-2. ADSP-218x Interrupts & Interrupt Vector Addresses�
	Interrupt Servicing Sequence
	Configuring Interrupts
	Interrupt Control Register
	Interrupt Mask Register
	Table 3-3. IMASK Entering ISRs�I

	Global Enable/Disable for Interrupts
	Interrupt Force and Clear Register
	Interrupt Latency
	Figure 3-2. Interrupt Latency (Timer, IRQx, and SPORT Interrupts)

	Status Registers and Status Stack
	Table 3-4. Status Registers
	Arithmetic Status Register
	Figure 3-3. ASTAT Register
	Table 3-5. Update of ASTAT Status Bits�

	Stack Status Register
	Figure 3-4. SSTAT Register (Read-Only)

	Mode Status Register
	Figure 3-5. MSTAT Register
	Figure 3-6.
	Table 3-6. Secondary Register Set

	Conditional Instructions
	Table 3-7. IF Condition Logic�

	TOPPCSTACK Instruction
	Table 3-8. Registers Used in Special TOPPCSTACK Instructions�
	TOPPCSTACK Restrictions

	Index

	8xdags.pdf
	Contents
	4 Data Address Generators
	Overview
	Data Address Generators (DAGs)
	DAG Registers
	Figure 4-1. Data Address Generator Block Diagram
	Indirect Addressing
	Linear Indirect Addressing
	Listing 4-1. Simple Linear Indirect Addressing
	Listing 4-2. Linear Indirect Addressing Using a Memory Variable

	Modulo Addressing (Circular Buffers)
	Calculating the Base Address
	Circular Buffer Base Address Example 1
	Circular Buffer Base Address Example 2
	Circular Buffer Operation Example 1
	Circular Buffer Operation Example 2

	Bit-Reverse Addressing

	Programming Data Accesses
	Variables and Arrays
	Circular Buffers

	PMD-DMD Bus Exchange
	PMD-DMD Bus Exchange Structure
	Figure 4-2. PMD-DMD Bus Exchange Block Diagram

	Using DAGs with Hardware Overlays

	Index

	8xsports.pdf
	Contents
	5 Serial Ports
	Overview
	Basic Description
	Table 5-1. SPORT External Interface
	Figure 5-1. Serial Port Block Diagram
	Interrupts
	Table 5-2. SPORT Interrupt Priorities

	Operation

	SPORT Programming
	Configuration
	Table 5-3. SPORT Configuration Registers�

	Receiving and Transmitting Data

	SPORT Enable
	Figure 5-2. SPORT Enables in the System Control Register
	Table 5-4. SPORT1 Alternate Configuration�

	Serial Clocks
	Figure 5-3. ISCLK Bit in SPORT Control Register
	Table 5-5. Common Serial Clock Frequencies (Internally Generated)�

	Word Length
	Figure 5-4. SLEN Field in SPORT Control Register

	Word Framing Options
	Frame Synchronization
	Figure 5-5. TFSR and RFSR Bits in SPORT Control Register

	Frame Synchronization Signal Source
	Figure 5-6. ITFS and IRFS Bits in SPORT Control Register

	Normal and Alternate Framing Modes
	Figure 5-7. TFSW and RFSW Bits in SPORT Control Register

	Active High or Active Low
	Figure 5-8. INVTFS and INVRFS Bits in SPORT Control Register

	Configuration Example
	Listing 5-1. Example SPORT Configuration Code

	Timing Examples
	Figure 5-9. SPORT Receive, Normal Framing
	Figure 5-10. SPORT Continuous Receive, Normal Framing
	Figure 5-11. SPORT Receive, Alternate Framing
	Figure 5-12. SPORT Continuous Receive, Alternate Framing
	Figure 5-13. SPORT Receive, Unframed Mode, Normal Framing
	Figure 5-14. SPORT Receive, Unframed Mode, Alternate Framing
	Figure 5-15. SPORT Transmit, Normal Framing
	Figure 5-16. SPORT Continuous Transmit, Normal Framing
	Figure 5-17. SPORT Transmit, Alternate Framing
	Figure 5-18. SPORT Continuous Transmit, Alternate Framing
	Figure 5-19. SPORT Transmit, Unframed Mode, Normal Framing
	Figure 5-20. SPORT Transmit, Unframed Mode, Alternate Framing

	Companding and Data Format
	Figure 5-21. DTYPE Field in SPORT Control Register
	Companding Operation Example
	Contention for Companding Hardware
	Companding Internal Data

	Autobuffering
	Autobuffer Control Register
	Figure 5-22. SPORT Autobuffer Control Register

	Serial Port Autobuffering on the ADSP-2187/2188/2189 Processors
	Autobuffering Example
	Listing 5-2. Autobuffering Example Configuration Code

	Multichannel Function
	Multichannel Setup
	Figure 5-23. SPORT0 Control Register with Multichannel Mode Enabled
	Figure 5-24. SPORT Multichannel Frame Delay Examples
	Figure 5-25. SPORT0 Multichannel Word Enable Registers

	Multichannel Operation
	Figure 5-26. Start of Multichannel Transfer
	Figure 5-27. Complete Multichannel Example

	SPORT Timing Considerations
	Companding Delay
	Clock Synchronization Delay
	Startup Timing

	Internally Generated Frame Sync Timing
	Figure 5-28. Serial Clock Synchronization

	Transmit Interrupt Timing
	Figure 5-29. SPORT Interrupt or Autobuffer Timing, Transmit 4-Bit Words (No Companding)

	Receive Interrupt Timing
	Figure 5-30. SPORT Interrupt or Autobuffer Timing, Receive 4-Bit Words (No Companding)
	Figure 5-31. SPORT Interrupt or Autobuffer Timing, Receive 4-Bit Words (Companding Enabled)

	Interrupt and Autobuffer Synchronization
	Figure 5-32. Synchronization of Autobuffer or Interrupt Request to Processor Clock

	Instruction Completion Latencies
	Interrupt and Autobuffer Service Example
	Figure 5-33. Interrupt Service Example
	Figure 5-34. Autobuffer Service Example

	Receive Companding Latency
	Figure 5-35. Receive Companding Example
	Figure 5-36. Receive Companding Example with Both Serial Ports

	Interrupts with Autobuffering Enabled
	Figure 5-37. Autobuffering Interrupt Example

	Unusual Complications
	Figure 5-38. Using One Index Register for Transmit and Receive Autobuffer

	Serial Port Startup Issues
	Gated Serial Clocks
	Figure 5-39. Gated Serial Clock Procedure

	Ringing and Overshoot on Serial Clock Pins
	Multi-Cycle Frame Sync Pulse
	Figure 5-40. SPORT Enabled While Receiving an Active Frame Sync
	Figure 5-41. External SPORT Enable Circuit

	Index

	8xtimer.pdf
	Contents
	6 Timer
	Overview
	Timer Architecture
	Figure 6-1. Timer Registers
	Figure 6-2. Timer Block Diagram

	Resolution
	Table 6-1. Timer Range and Resolution

	Timer Operation
	Table 6-2. Example Of Timer Operation�

	Enabling the Timer
	Listing 6-1. Sample Code for Enabling the Timer and Generating Interrupts

	Index

	8xsysin.pdf
	Contents
	7 System Interface
	Overview
	Pin Descriptions
	Table 7-1. ADSP-218x Processor Package Configurations (Cont’d)
	Pin Descriptions for 128-LQFP Package Processors
	Table 7-2. ADSP-2181 and ADSP-2183 Processor Pin Descriptions�

	Pin Descriptions for 100-LQFP Package Processors
	Common-Mode Pins
	Table 7-3. Common-Mode Pins�

	Memory Mode Pins
	Table 7-4. Full Memory Mode Pins (Mode C = 0)
	Table 7-5. Host Memory Mode Pins (Mode C = 1)�

	Active or Passive Mode Pin Configuration
	Terminating Unused Pins
	Table 7-6. Pin Terminations�

	Recommendations for Unused Pins

	Clock Signals
	Figure 7-1. External Crystal Connections
	Figure 7-2. Third-Overtone Crystal
	Figure 7-3. Clock Signals & Processor States
	Synchronization Delay
	1/2x Clock Considerations

	Resetting the Processor
	Software-Forced Rebooting
	Table 7-7. Software-Forced Rebooting
	Table 7-8. ADSP-218x Processor State After Reset or Software Reboot�
	Register Values for BDMA Booting
	Table 7-9. BDMA Registers before and after Initial Boot Loading�

	External Interrupts
	Interrupt Sensitivity

	Flag Pins
	Figure 7-4. Programmable Flag Register
	Figure 7-5. Programmable Flag Data Register

	Powerup Issues
	Powerup Sequence
	Figure 7-6. Protection Diodes and IO Pin ESD Protection

	Power Supplies
	Dual Supply Example
	Figure 7-7. Suggested Dual Power Supply for ADSP-218x M Series DSPs

	Reset Generators
	Figure 7-8. Simple Reset Generator for M Series DSPs
	Figure 7-9. Reset Generator and Power Supply Monitor

	Powerdown
	Powerdown Control
	Figure 7-10. SPORT1 Autobuffer/Powerdown Control Register

	Entering Powerdown
	Exiting Powerdown
	Ending Powerdown with the Powerdown Pin
	Ending Powerdown with the RESET Pin

	Startup Time after Powerdown
	Systems Using an External TTL/CMOS Clock
	Systems Using a Crystal and the Internal Oscillator

	Processor Operation During Powerdown
	Interrupts and Flags
	SPORTs
	IDMA Port During Powerdown
	BDMA Port During Powerdown

	Conditions for Lowest Power Consumption
	Table 7-10. Pin States During Powerdown�

	PWDACK Pin
	Figure 7-11. Powerdown Timing Examples

	Using Powerdown as a Non-Maskable Interrupt

	Bus Request/Grant
	Figure 7-12. Bus Request (With or Without External Access)

	Target System Hardware
	Target Board Connector for EZ-ICE Probe
	Figure 7-13. EZ-ICE Connector
	Using Mode Pins with RESET and ERESET Signals
	Figure 7-14. EZ-ICE Circuit for ADSP218x Mode Pins

	Bus Request Signal
	Memory Select Signals
	Decoupling Capacitors
	RESET Signal
	PCB Board
	EZ-ICE Powerup Procedure
	Other Considerations
	Recommended Reading

	Index

	8xmemory.pdf
	Contents
	8 Memory Interface
	Overview
	Program Memory and Data Memory
	Byte Memory Space
	I/O Memory Space
	Memory Buses
	External Memory Spaces
	Composite Memory Select
	External Overlay Memory
	Internal Direct Memory Access Port
	Memory Modes

	Memory Interfaces
	Table 8-1. ADSP-218x Processor Base On-Chip Memory
	Figure 8-1. ADSP�2181, ADSP�2183, and ADSP�2185 Memory Architecture (MMAP=0 for ADSP�2181 and ADS...
	Figure 8-2. ADSP�2184 Memory Architecture (Mode B=0)
	Figure 8-3. ADSP�2186 Memory Architecture (Mode B=0)
	Figure 8-4. ADSP�2187 Memory Architecture (Mode B=0)
	Figure 8-5. ADSP�2188 Memory Architecture (Mode B=0)
	Figure 8-6. ADSP�2189 Memory Architecture (Mode B=0)
	Program Memory Interface
	Table 8-2. PMOVLAY and Program Memory Overlay Addressing

	Data Memory Interface
	Table 8-3. DMOVLAY and Data Memory Overlay Addressing
	Listing 8-1. DMOVLAY Register Example

	Byte Memory Interface
	I/O Memory Space
	Figure 8-7. Wait State Control Register (ADSP-218x M and N Series)
	Figure 8-8. Wait State Control Register (All ADSP-218x Processors except M and N Series)

	Composite Memory Select
	Figure 8-9. CMSSEL Selection for CMS Signal
	CMS Signal as Chip Select for 32 K x 8-Bit SRAMs
	Figure 8-10. Example Using CMS Signal as a Chip Select

	BMS Disable
	Figure 8-11. Example Using CMS Signal to Chip Select FLASH or SRAM Memory

	Memory Interface Modes
	Full Memory Mode
	Host Memory Mode
	Accessing Peripherals
	Table 8-4. Possible 16-Bit Peripheral Addresses

	Byte Memory Accesses

	Memory Interface Pins
	Table 8-5. Full Memory Mode Pins (Mode C=0)
	Table 8-6. Host Memory Mode Pins (Mode C=1)�

	Index

	8xdma.pdf
	Contents
	9 DMA Ports
	Overview
	BDMA Port
	Figure 9-1. ADSP-218x Processor BDMA Port Interface
	BDMA Port Functional Description
	BDMA Control Registers
	Figure 9-2. BDMA Internal Address Register
	Figure 9-3. BDMA External Address Register
	Table 9-1. BDMA External Addresses
	Figure 9-4. BDMA Control Register (ADSP�2187, ADSP�2188, and ADSP�2189)
	Figure 9-5. BDMA Control Register (All ADSP-218x Processors except the ADSP�2187, ADSP�2188, and ...
	Figure 9-6. BDMA Word Count Register
	Figure 9-7. BMWAIT Field in Composite Select Control Register (All ADSP-218x Processors except th...
	Figure 9-8. BMWAIT Field in Composite Select Control Register (ADSP-218x M and N Series)

	Byte Memory Word Formats
	Table 9-2. Byte Memory Storage Formats

	BDMA Booting
	Table 9-3. Booting Methods for the ADSP-2181 and ADSP-2183 Processors�
	Table 9-4. Booting Methods for All Processors Except the ADSP�2181 and ADSP�2183 Processors�
	Development Software Features for BDMA Booting

	IDMA Port
	Figure 9-9. ADSP-218x Processor IDMA Port Interface
	IDMA Port Pin Summary
	Table 9-5. IDMA Port Pins
	Table 9-6. IDMA Port Input Signals
	Figure 9-10. IDMA Control Register
	Figure 9-11. IDMA Overlay Register
	Figure 9-12.

	DMA Port Functional Description
	Figure 9-13. General IDMA Transfer Flow Chart

	Modifying Control Registers for IDMA
	Listing 9-1. Loop to Transfer Memory-Mapped Control Register Contents

	IDMA Timing
	Address Latch Cycle
	Figure 9-14. IDMA Address Latch or Overlay Latch Cycle

	Overlay Latch Cycle
	Long Read Cycle
	Figure 9-15. IDMA Long Read Cycle

	Short Read Cycle
	Figure 9-16. IDMA Short Read Cycle

	IDMA Read—Short Read Only Mode
	Figure 9-17. IDMA Short Read Cycle in Short Read Only Mode Timing
	Figure 9-18. IDMA Overlay Register (Short Read Only Mode)

	Long Write Cycle
	Figure 9-19. IDMA Long Write Cycle

	Short Write Cycle
	Figure 9-20. IDMA Short Write Cycle

	Boot Loading through the IDMA Port
	DMA Cycle Stealing, Hold Offs, and IACK Acknowledge
	Priority Chain

	Index

	8xhardex.pdf
	Contents
	10 Hardware Interfacing and Examples
	Overview
	Interfacing to DSP Processors
	Parallel Interfacing to DSP Processors
	Reading Data from Memory-Mapped ADCs
	Figure 10-1. ADC to ADSP-218x DSP Parallel Interface
	Figure 10-2. ADSP-218x DSP Memory Read Timing
	Figure 10-3. AD7854/AD7854L Functional Block Diagram
	Table 10-1. Parallel Read Interface Timing Specification Comparison between the ADSP-2189M and AD...
	Figure 10-4. AD7854/AD7854L ADC Parallel Interface to ADSP-2189M

	Writing Data to Memory-Mapped DACs
	Figure 10-5. DAC to ADSP-218x DSP Parallel Interface
	Figure 10-6. ADSP-218x DSP Memory Write Timing
	Figure 10-7. AD5340 Parallel Input DAC
	Table 10-2. Parallel Write Interface Timing Specification Comparison between the ADSP-2189M DSP a...
	Figure 10-8. AD5340 DAC Parallel Interface to ADSP-2189M

	Serial Interfacing to DSP Processors
	Figure 10-9. ADSP-218x Family Serial Port Block Diagram
	Serial ADC to DSP Interface
	Figure 10-10. ADSP-2189M Serial Port Receive Timing
	Figure 10-11. AD7853/AD7853L ADC Serial Output
	Figure 10-12. AD7853L ADC Serial Output Timing
	Figure 10-13. AD7853/AD7853L ADC Serial Interface to ADSP-2189M

	Serial DAC to DSP Interface
	Figure 10-14. AD5322 Dual DAC
	Figure 10-15. AD5322 DAC Serial Interface to ADSP-2189M

	Interfacing I/O Ports, Analog Front Ends, and Codecs
	Figure 10-16. AD73322 Codec with Serial Interface
	Figure 10-17. AD73322 Interface to ADSP-218x Family Processors

	High-Speed Interfacing
	Figure 10-18. AD9201 ADC and AD9761 DAC Interface to ADSP-218x

	DSP System Interface
	Figure 10-19. ADSP-2189M System Interface (Full Memory Mode)

	Interfacing Examples
	Serial Port to Codec Interface
	Figure 10-20. AD7311 Codec(s) to ADSP-218x DSP Serial Interface

	Serial Port to ADC Interface
	ADSP-218x DSP to AD7475/95 ADC Interface
	Figure 10-21. ADSP-218x DSP to AD7475/95 ADC Serial Interface
	Figure 10-22. ADSP-218x DSP to AD7475/95 ADC Serial Interface Timing

	ADSP-218x DSP to AD7888 ADC interface
	Figure 10-23. ADSP-218x DSP to AD7888 ADC Serial Interface
	Figure 10-24. ADSP-218x DSP to AD7888 ADC Serial Interface Timing

	Parallel Port to ADC Interface
	Figure 10-25. ADSP-218x DSP to AD7899 ADC Parallel Interface

	Serial Port to DAC Interface
	Figure 10-26. ADSP-218x DSP to AD5320 DAC Serial Interface
	Figure 10-27. ADSP-218x DSP to AD5320 DAC Serial Interface Timing

	IDMA Interface to a Host Processor
	IDMA Operation
	Figure 10-28. IDMA Transfer Sequence
	Figure 10-29. IDMA Control Registers

	Host Interface Hardware Design
	Figure 10-30. Glue Logic between the MC68332 and the ADSP-2189M Using Address Decoding
	Figure 10-31. Glue Logic Between the MC68332 and the ADSP-2189M Using a Chip Select

	System Design Issues
	Figure 10-32. IDMA Booting Process
	Figure 10-33. IDMA Image File Format
	Figure 10-34. MC6833x Download Flow Process
	Listing 10-1. Downloading Code and Data to ADSP-2189 IDMA Port Interface Example (MC6833x Assembl...

	Advanced Topics

	References

	Index

	8xnum.pdf
	Contents
	A Numeric Formats
	Overview
	Unsigned or Signed: Twos-Complement Format
	Integer or Fractional Format
	Figure A-1. Integer Format
	Figure A-2. Fractional Format
	Table A-1. Fractional Formats and Their Ranges�

	Binary Multiplication
	Figure A-3. Format of Multiplier Result
	Fractional Mode and Integer Mode

	Block Floating-Point Format
	Figure A-4. Data With Guard Bits
	Figure A-5. Block Floating-Point Adjustment

	Index

	8xcsregs.pdf
	Contents
	B Control/Status Registers
	Overview
	Figure B-1. ADSP�218x Registers

	Memory-Mapped Registers
	Figure B-2. System Control Register
	Figure B-3. Wait State Control Register (ADSP-218x M and N Series)
	Figure B-4. Wait State Control Register (All ADSP-218x Processors except the M and N Series)
	Figure B-5. Timer Registers
	Figure B-6. SPORT0 Control Register
	Figure B-7. SPORT0 Multichannel Word Enable Registers
	Figure B-8. SPORT0 Autobuffer Control Register
	Figure B-9. SPORT0 SCLKDIV and RFSDIV Registers
	Figure B-10. SPORT1 Control register
	Figure B-11. SPORT1 SCLKDIV and RFSDIV Registers
	Figure B-12. SPORT1 Autobuffer Control Register
	Figure B-13. Programmable Flag and Composite Select Control Register (ADSP-218x M and N Series Pr...
	Figure B-14. Programmable Flag and Composite Select Control Register (All ADSP-218x processors ex...
	Figure B-15. Programmable Flag Data Register
	Figure B-16. BDMA Control Register (All ADSP-2187, ADSP-2188, ADSP-2189 Processors)
	Figure B-17. BDMA Control Register (All ADSP-218x Processors except ADSP-2187, ADSP-2188, and ADS...
	Figure B-18. BDMA Word Count Register
	Figure B-19. BDMA External Address Register
	Figure B-20. BDMA Internal Address Register
	Figure B-21. IDMA Control Register
	Figure B-22. IDMA Overlay Register

	Non-Memory Mapped Registers
	Figure B-23. ASTAT and SSTAT Registers
	Figure B-24. MSTAT and ICNTL Registers
	Figure B-25. IMASK Register
	Figure B-26. IFC Register

	Index

	8xprod.pdf
	Contents
	C Advanced Product Features
	Overview
	Table C-1. ADSP_218x Processor Advanced Features�

	Index

	Index.pdf
	I Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

